• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 129
  • 129
  • 129
  • 57
  • 37
  • 35
  • 30
  • 29
  • 26
  • 25
  • 18
  • 17
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

SYNTHETIC JET MICROPUMP

Abdou, Sherif 04 1900 (has links)
<p>The production of a novel micropump based on the synthetic jet principle is investigated both numerically and experimentally. The proposed micropump consists of a synthetic jet actuator driven by a vibrating diaphragm issuing into an inverted T- shaped channel structure forming the inlet/outlet channels of the pump.</p> <p>The software package Ansys is used to perform numerical investigations of the operation of the proposed micropump. Simulations were performed to study the effect of changing the inlet/outlet channel dimensions as well as the operating frequency, amplitude and duty cycle of the excitation signal. Inlet/outlet channel widths ranging from 200 to 800 μm and operating amplitude and frequency of excitation of the 5 mm square membrane driving the synthetic jet actuator ranging from 20 to 60 μm and from 20 to 60 Hz respectively were investigated.</p> <p>Based on the findings of the numerical simulations, a prototype design was chosen and produced. Prototype production using microfabrication techniques as well as micromachining was investigated. The final prototype was micromachined using plexiglass as the working material. An experimental setup was constructed to test the performance of the produced prototype, which allowed for measuring the produced flow rate, pressure head, actuation amplitude and frequency.</p> <p>The findings of the numerical simulations verified the possibility to produce a working micropump with flow rates of up to 1.3 ml/min. Simulation results also showed the dependence of the produced flow rate on both the inlet and outlet channel widths. An increase in the inlet channel width resulted in a gain in the average flow rate through the pump while an increase in the outlet channel width results in a reduction in the flow rate. Increases in either the actuation amplitude or frequency of excitation both resulted in an improvement in the produced flow rate. Changes in the ejection duty cycle, or the ejection time relative to the suction time during an actuation cycle, were found to influence the flow rate produced by the pump. A shorter ejection time produced a higher flow rate from the pump as compared to a longer ejection time. It was also found that changes in dimensions or operating parameters affected the fluctuations in the flow rate through the pump associated with the pulsating nature of the synthetic jet. Experimental investigations confirmed the findings of the numerical simulations in terms of the flow rate and the trends in the dependence of the flow rate on operating parameters. Values of maximum back pressure of up to 500 Pa were also reported experimentally and membrane driving powers of up to 122 μW were calculated numerically.</p> / Doctor of Philosophy (PhD)
12

Telerobotic Sensor-based Tool Control Derived From Behavior-based Robotics Concepts

Noakes, Mark William 01 May 2011 (has links)
@font-face { font-family: "TimesNewRoman"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; } Teleoperated task execution for hazardous environments is slow and requires highly skilled operators. Attempts to implement telerobotic assists to improve efficiency have been demonstrated in constrained laboratory environments but are not being used in the field because they are not appropriate for use on actual remote systems operating in complex unstructured environments using typical operators. This work describes a methodology for combining select concepts from behavior-based systems with telerobotic tool control in a way that is compatible with existing manipulator architectures used by remote systems typical to operations in hazardous environment. The purpose of the approach is to minimize the task instance modeling in favor of a priori task type models while using sensor information to register the task type model to the task instance. The concept was demonstrated for two tools useful to decontamination & dismantlement type operations—a reciprocating saw and a powered socket tool. The experimental results demonstrated that the approach works to facilitate traded control telerobotic tooling execution by enabling difficult tasks and by limiting tool damage. The role of the tools and tasks as drivers to the telerobotic implementation was better understood in the need for thorough task decomposition and the discovery and examination of the tool process signature. The contributions of this work include: (1) the exploration and evaluation of select features of behavior-based robotics to create a new methodology for integrating telerobotic tool control with positional teleoperation in the execution of complex tool-centric remote tasks, (2) the simplification of task decomposition and the implementation of sensor-based tool control in such a way that eliminates the need for the creation of a task instance model for telerobotic task execution, and (3) the discovery, demonstrated use, and documentation of characteristic tool process signatures that have general value in the investigation of other tool control, tool maintenance, and tool development strategies above and beyond the benefit sustained for the methodology described in this work.
13

Development of a MEMS Device for the Determination of Cell Mechanics

Schwartz, Rachael 26 November 2012 (has links)
Cell mechanics are directly related to the biological functionality of a cell, and therefore have been extensively studied. Current understanding of the unique relationships associated with mechanical loading conditions and the biological outcomes of a cell is far from complete [1]. The main objective of this thesis work was the design of a device capable of determining mechanical properties including stiffness and Young’s modulus of a biological cell. The device was implemented using micro-electro mechanical systems technology (MEMS), and the cell testing was limited to yeast cells for the purpose of this research. The design consisted of a micro-gripper which performed controlled cell squeezing with a spring of known stiffness. Differential displacements were obtained allowing for the calculation of cell mechanical properties. The incorporation of spatially periodic structures on the moving components of the gripper enabled measurements with 10 nm precision based on discrete Fourier transformation and phase [2].
14

Surface Micromachined Capacitive Accelerometers Using Mems Technology

Yazicioglu, Refet Firat 01 January 2003 (has links) (PDF)
Micromachined accelerometers have found large attention in recent years due to their low-cost and small size. There are extensive studies with different approaches to implement accelerometers with increased performance for a number of military and industrial applications, such as guidance control of missiles, active suspension control in automobiles, and various consumer electronics devices. This thesis reports the development of various capacitive micromachined accelerometers and various integrated CMOS readout circuits that can be hybrid-connected to accelerometers to implement low-cost accelerometer systems. Various micromachined accelerometer prototypes are designed and optimized with the finite element (FEM) simulation program, COVENTORWARE, considering a simple 3-mask surface micromachining process, where electroplated nickel is used as the structural layer. There are 8 different accelerometer prototypes with a total of 65 different structures that are fabricated and tested. These accelerometer structures occupy areas ranging from 0.2 mm2 to 0.9 mm2 and provide sensitivities in the range of 1-69 fF/g. Various capacitive readout circuits for micromachined accelerometers are designed and fabricated using the AMS 0.8 &micro / m n-well CMOS process, including a single-ended and a fully-differential switched-capacitor readout circuits that can operate in both open-loop and close-loop. Using the same process, a buffer circuit with 2.26fF input capacitance is also implemented to be used with micromachined gyroscopes. A single-ended readout circuit is hybrid connected to a fabricated accelerometer to implement an open-loop accelerometer system, which occupies an area less than 1 cm2 and weighs less than 5 gr. The system operation is verified with various tests, which show that the system has a voltage sensitivity of 15.7 mV/g, a nonlinearity of 0.29 %, a noise floor of 487 Hz &micro / g , and a bias instability of 13.9 mg, while dissipating less than 20 mW power from a 5 V supply. The system presented in this research is the first accelerometer system developed in Turkey, and this research is a part of the study to implement a national inertial measurement unit composed of low-cost micromachined accelerometers and gyroscopes.
15

The Optimum Design of a Vacuum-Compatible Manipulator to Calibrate Space Based Ultraviolet Imagers

Grillo, Jason L. 01 January 2020 (has links)
Recent discoveries in geospace science have necessitated the design of compact UV imaging instruments to make space-based observations from multiple vantage points. The miniaturized ultraviolet imager (MUVI) instrument from the Space Sciences Laboratory (SSL) at UC Berkeley is under development to facilitate such discoveries on a wider scale. This thesis documents the design, integration, and characterization of a vacuum compatible manipulator to calibrate the MUVI instrument inside the UV thermal vacuum chamber at SSL. Precision linear and rotation stages were implemented with custom mounting plates to achieve four degrees of freedom. Optical components were installed to imitate the MUVI instrument for testing purposes. A customized PCB was fabricated to control the stages and receive position feedback data. A Graphical User Interface was programmed and utilized to position the manipulator during experimental validation. Field of View sweeps were conducted using visible light and a monochromatic CMOS sensor to track the coordinates of a laser's centroid. An analytical model of the optics assembly was developed and later refined from the experimental results. Using this model, the translation stages successfully compensated for optical misalignments. Analysis of the performance data showed the pointing resolution of the manipulator was less than 1 arcmin, which satisfied the calibration requirement for the MUVI imager.
16

Dynamic Pressure Sensing for the Flight Test Data System

Goupil, Marc Y 01 December 2019 (has links)
This thesis describes the design, assembly, and test of the FTDS-K, a new device in the Boundary Layer Data System (BLDS) family of flight data acquisition systems. The FTDS-K provides high-frequency, high-gain data acquisition capability for up to two pressure sensors and an additional three low-frequency pressure sensors. Development of the FTDS-K was separated into a core module, specialized analog subsystem, and practical testing of the FTDS-K in a flow measurement mission. The core module combines an nRF52840-based microcontroller module, switching regulator, microSD card, real-time clock, temperature sensor, and trio of pressure sensors to provide the same capabilities as previous-generation BLDS-P devices. An expansion header is included in the core module to allow additional functionality to be added via daughter boards. An analog signal chain comprised of two-stage amplification and fourth-order active antialiasing filters was implemented as a daughter board to provide an AC-coupled end-to-end gain of 7,500 and a DC-coupled end-to-end gain of 50. This arrangement was tested in a wind tunnel to demonstrate that sensors with a full-scale range of 103 kPa can be used to reliably discriminate between laminar and turbulent flows based on pressure fluctuation differences on the order of tens of Pa. A combination of wind-off correction and band-filtering was used to reduce the effect of inherent and induced electrical noise, while two-sensor correlation was tested and shown to be effective at removing certain types of noise. Total power consumption for the FTDS-K in a representative mission is 208 mW, which translates to an operational endurance of 9 hours with 2 AAA LiFeS2 cells at -40°C.
17

Structure Climbing Monkey Robot

Bessent, Paul 01 June 2011 (has links)
This report describes the design, building, and testing of the Structure Climbing Monkey Robot (SCMR). It is composed of seven successive joints and linkages with two grippers at the two ends. Each gripper can act as the base or the end of the robot. The SCMR has the ability to climb any structure. The gripper plates can be changed to grab different kinds of structures, but this one is made to grab 2x4‘s. A program was written to assist the user to grab four non-coplanar, non-orthogonal points. The SCMR is actuated by a total of nine motors: two to open and close the two grippers and seven to control the movement of the SCMR. Planetary gear motors are used with a worm gear to control the motion of each joint. The worm gear increases the torque of the motor and reduces the rotational speed to a usable value. The SCMR is just over 45 inches long and weighs about 30 pounds. The motion of the SCMR is controlled by the microcontroller Arduino Mega 2560, Vex Robotic quadrature encoders, and Pololu 18v15 motor driver chips. Code was written in the languages Arduino and Processing to actuate the motors and create the GUI, respectively. The motors can be controlled individually or run simultaneously while incrementing a specified angle.
18

Generic Project Plan for a Mobile Robotics System

Joshi, Jay Anilkumar 01 October 2019 (has links)
This thesis discussed the mobile land robots for the robotic competitions. The topics discussed in this thesis are robotic systems, mobile land robots, robot competitions, and example of robot designs. Question-answer sections are added to help understand the requirements to build the robot. Examples include three different teams who participated in different robotic competitions to provide a context for robotic competitions. The thesis was divided into the five chapters. The first and second chapters explained the different kind of robotics systems, and opportunities. The focus of the information was the mobile land robots, which was explained under the third chapter, mobile land robots. The aim of the thesis was to guide those who want to design, build, and compete in the mobile robot competition. As a result, the information from various resources been gathered and has been given a form of thesis to help individuals or group of individuals to guide them through the robotic competitions.
19

Development of a Low-Cost, Photovoltaic-Powered, Automated Water Recovery System

Daley, David E. 01 August 2021 (has links) (PDF)
An existing water filtration system at the Channel Islands Marine & Wildlife Institute (CIMWI) wastes approximately 25 gallons of water per day rinsing out solid waste under light load. To reduce CIMWI’s water and energy consumption, an automated system was designed and built to recover the rinse water and return it to the existing filtration loop. Models for fluid system requirements, basic energy needs, and photo- voltaic energy generation were created to aid in component selection. Basic sensors and electronics were programmed in Python for use with a Raspberry Pi single board computer to collect and process water recovery data over time. Pump automation and data acquisition energy needs were met with a 100W photovoltaic module, pulse width modulation (PWM) charge controller, and an absorbed glass mat (AGM) battery. A prototype system, $732 in total cost, was installed and was found to recover 19 gallons of water over the initial 30-hour testing period under light load. Models and software developed for this project could be adapted to aid in the creation of similar water recovery systems.
20

Artificial Skin Tactile Sensor for Prosthetic and Robotic Applications

Miller, Ross James 01 December 2010 (has links) (PDF)
To solve the problem of limited tactile sensing in humanoid robotics as well as provide for future planned mechanical prostheses, an innovative tactile sensor system was created and embedded into two realistic-looking artificial skin gloves. These artificial skin tactile sensors used small piezoelectric ceramic disks to measure applied force at multiple points on each glove. The gloves were created using silicone rubber to simulate both the texture and look of human skin, while maintaining both flexibility and durability. The sensor outputs were buffered by high-impedance voltage-following operational amplifiers, and then read sequentially using a multiplexing scheme by a microcontroller. Sensor data were sent via USB to a computer, where a graphical user display was created to show the tactile information in real time. These prototypes successfully demonstrated the viability of small piezoelectric elements embedded in silicone rubber for use in creating flexible and elastic tactile sensors.

Page generated in 0.0946 seconds