• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

IN SITU ELECTROKINETIC SAMPLE PREPARATION FOR SELF-ASSEMBLED MONOLAYER BASED ELECTROCHEMICAL BIOSENSING

Sin, Lai Yi Mandy January 2011 (has links)
Electrokinetics based microfluidic systems are potentially promising for lab-on-a-chip applications due to their effectiveness in manipulating nanoscale and biological objects, label-free operation, simple fabrication processes, small voltage requirements, and most importantly simple system integration strategy. Among various electrokinetics techniques, AC electrothermal flow (ACEF) is the most promising technique in microfluidic manipulation toward biomedical applications due to its effectiveness in high conductivity biological and physiological fluids. As relatively little is known about the ACEF induced fluid motion at highly conductive samples, the characteristics of electrothermal manipulation of fluid samples with different conductivities were investigated systematically. For low conductivity sample (below 1 S/m), the characteristics of the electrothermal fluid motion was in quantitative agreement with the theory. For high conductivity samples (greater than 1 S/m), the fluid motion appeared to deviate from the model as a result of electrochemical reactions and the temperature effect. Here, a universal electrode approach which directly implements ACEF-induced sample preparation on a SAM based electrochemical sensor for point-of-care diagnostics of urinary tract infections has also been demonstrated. Using uropathogenic E. coli clinical isolates as model systems, we demonstrate that "on-chip" ACEF-induced sample preparation can improve the sensor performance without complicated system integration strategy and presents a pathway for implementing truly lab on a chip, instead of chip in a lab. Finally an integrated chip approach has been proposed for transforming electrochemical sensing system from laboratory research into point-of-care diagnostics with multiple microelectrodes.
2

High dynamic range CMOS-integrated biosensors

Singh, Ritu Raj 16 March 2015 (has links)
Biosensors are extremely powerful analytical tools instrumental for detection and quantification of bio-molecules such as DNA, peptides and even metabolites. The recent decade has seen a surge in biosensing applications ranging from molecular diagnostics, environmental monitoring, basic life science research, forensics and biothreat monitoring. The existing biosensor systems of today, however, have several limitations. They are expensive, bulky in size, power hungry, hard to use and with access limited to core facilities. Among other disadvantages, these impediments discourage the availability of point-of-care testing and low cost in-vitro diagnostics (IVD) in locations such as developing and third world countries. The main bottleneck in the development of low-cost and compact biosensors is the effective and efficient integration of several complex components present inside a typical biosensor. These components are the sample preparation, biomolecular recognition, signal transduction and data analysis. With vii the recent advancements in very large scale integration (VLSI) and fabrication technologies, it is now possible to integrate several of these biosensing components into a small form factor. This thesis proposes leveraging the utilization of VLSI technology to develop a low-cost, miniature, portable, fast analysis, high throughput and low power consumption biosensor solution. Apart from the miniaturization bene- fits, employing VLSI technology facilitates low-cost, high yield and low process variation. We present complementary metal-oxide semiconductor (CMOS) integrated microsystem solutions for fluorescence, bioluminescence and electrochemical biosensing. Simulation models are provided for the microsystems and the specifications for the constituent components derived. A common problem in the transducer development of biosensors that we specifically focus on, is the presence of a large non-informative signal called the background signal. This background signal can be several orders of magnitudes higher than the signal of interest and it reduces the overall sensitivity of the biosensor. Existing transducer solutions rely on very high dynamic range, expensive and power hungry solutions to solve the problem of high background signal. To address the problem of overwhelming background signal, this thesis proposes an active background subtraction architecture merged with a Σ∆ modulator. The robust, versatile architecture can be conveniently employed for optical and electrochemical sensing. The proposed architecture attenuates the background signal very early in the signal chain, achieving high dyviii namic range while significantly relaxing the performance requirements of the subsequent circuit blocks in terms of power dissipation, area and bandwidth requirements. To validate the proposed solution, two CMOS IC prototypes were developed for optical and electrochemical sensing respectively. A 12 × 12 array of Σ∆ photodetector with in-pixel background subtraction was developed in 0.18µm standard CMOS technology. The pixel performance has been validated with over 140dB dynamic range and the ability of subtract the background subtraction current validated from 10nA to 10fA. Real time pyrosequencing experiment has also been performed utilizing the photodetector array. A 12 × 12 array of Σ∆ electrochemical sensor with in-pixel background subtraction was developed in 0.18µm standard CMOS technology. Capacitive charge redistribution circuit architecture for bipolar current measurements was employed. The circuit performance was validated over the wide input current range of 100nA to 1pA. / text
3

Dual functionalization of magnetic nanoparticles by electroactive molecules and antibodies for platelet antigens detection

Chen, Feixiong 21 September 2017 (has links)
Ce travail de thèse s’inscrit dans un projet plus large qui vise à développer avec le laboratoire Ampère et l’Etablissement Français du Sang un microsystème capable de réaliser un phénotypage plaquettaire pour le diagnostic de la thrombopénie néonatale. Ce microsystème doit permettre d’isoler les plaquettes du sang total et de détecter les antigènes plaquettaires présents à leur surface. L’isolation des plaquettes se fera grâce à un module de magnétophorèse et un module de diélectrophorèse. La détection sera électrochimique. Le cœur de ce travail de thèse a donc consisté à développer des nanoparticules magnétiques pour le module de magnétophorèse. Ces nanoparticules doivent permettre la capture spécifique des plaquettes et servir de marqueur pour la détection électrochimique. Pour ce faire, des nanoparticules magnétiques ont donc été doublement fonctionnalisées en une seule étape avec un anticorps anti-CD32 dirigé contre l’antigène CD32 présent à la surface des plaquettes et avec une molécule électroactive. Après optimisation des différents paramètres de greffage, les propriétés électrochimiques de ces particules ont été caractérisées. Leurs propriétés de bioreconnaissance ont été testées sur l’antigène purifié puis sur plaquettes entières. Enfin la faisabilité de la manipulation des structures nanoparticules/plaquettes par magnétophorèse avec des micro-aimants a été démontrée. / Fetal/neonatal alloimmune thrombocytopenia (F/NAIT) represents a great threat to new-borns or fetus. It occurs when a woman becomes alloimmunized against fetal platelet antigens. With the aim to improve fetal and neonatal survival, in collaboration with Ampere Laboratory and Etablissement Français du Sang, we plan at developing a Point-of-Care (POC) platform for platelet phenotyping. The final POC microsystem will be able to perform magnetophoresis and dielectrophoresis for platelets isolation from whole blood, and their selective electrochemical detection allowing for their phenotyping. The development of nanoparticles (NPs) with magnetic, electrochemical and bio-selection properties is a key issue. Herein, we have focused on the elaboration of magnetic NPs bearing 1) anti-CD32 antibody for specific interaction with CD32 antigen, which is present at the surface of platelets and 2) ferrocene carboxylic acid, an electroactive molecule for detection. To achieve this, the coupling reactions of this electroactive molecule and this antibody were optimized and a one-pot reaction for double functionalization was developed. The bioactivity of the immobilized antibody was tested at the molecular and cellular level. The dual-functionalized NPs voltammetric signals were also investigated. Finally the feasibility of platelets capture and actuation by magnetophoresis with micro-magnet array were demonstrated.
4

Thin Film Based Biosensors for Point of Care Diagnosis of Cortisol

Pasha, Syed Khalid 05 November 2018 (has links)
This dissertation explores the different ways to create thin film-based biosensors that are capable of rapid and label-free detection of cortisol, a non-specific biomarker closely linked to stress, within the physiological range of 10pM to 10 uM. Increased cortisol levels have been linked to stress-related diseases, such as chronic fatigue syndrome, irritable bowel syndrome, and post-traumatic stress disorder. It also plays a role in the suppression of the immune system as well. Therefore, accurate measurement of cortisol in saliva, serum, plasma, urine, sweat, and hair, is clinically significance to predict physical and mental diseases. In this dissertation, thin film-based electrochemical immunosensors were fabricated using a self-assembled monolayer (SAM) functionalized by cortisol specific antibodies to detect cortisol at 10 pM level sensitivities in the presence of a redox probe. The fabricated electrochemical cortisol immunosensors were able to detect cortisol in human saliva samples and the outcomes were validated using the standard Enzyme Linked Immuno Sorbent Assay (ELISA) technique. With the aim of improving signal amplification and label-free cortisol detection, copper nanoparticles were incorporated on screen-printed carbon electrodes (SPCE) for the fabrication of electrochemical cortisol immunosensor. This SPCE-based sensor showed a sensitivity of 4.21µA/M and the limit of detection 6.6nM. Both the SAM and SPCE-based immunosensors were not thermally stable due to the instability of antibodies at room temperature. To address this issue, an antibody-free immunosensor was fabricated. Molecular Imprinted Polymer (MIP) was used to template the target cortisol molecule. The MIP-based sensing platform was prepared using polypyrrole, a thermally stable conducting polymer. The conductivity of the polymer ensured good electrical performance. The polypyrrole-based MIP was synthesized by means of electrochemical polymerization and was used to detect cortisol within the physiological range at room temperature. MIP-based sensors exhibited the detection limit of 1 pM, and were cost-effective, easy to fabricate, temperature stable, and reusable. The sensing performance of the resulting sensors was comparable to those of commercially available technologies, such as ELISA. Aiming to perform cortisol sensing at point-of-care (POC), an Extended Gate Field Effect Transistor (EGFET) was integrated with a developed MIP cortisol sensor. The as developed MIP-EGFET sensor was used to detect the cortisol concentration in the range of 1 pM to 100 nM. A few of the major advantages of the developed sensor are its ability to provide a direct readout and simpler electronic systems, which are necessary for miniaturized Point of Care devices.

Page generated in 0.1189 seconds