• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sol-Gel Derived Ionically Conducting Composites : Preparation, Characterization And Electrochemical Capacitor Studies

Mitra, Sagar 02 1900 (has links) (PDF)
No description available.
2

Electrochemical Investigations Of Sub-Micron Size And Porous Positive Electrode Materials Of Li-Ion Batteries

Sinha, Nupur Nikkan 05 1900 (has links) (PDF)
A Comprehensive review of literature on electrode materials for lithium-ion batteries is provided in Chapter 1 of the thesis. Chapter 2 deals with the studies on porous, sub-micrometer size LiNi1/3Co1/3O2 as a positive electrode material for Li-ion cells synthesized by inverse microemulsion route and polymer template route. The electromechanical characterization studies show that carbon-coated LiNi1/3Co1/3O2 samples exhibit improved rate capability and cycling performance. Furthermore, it is anticipated that porous LiNi1/3Co1/3O2 could be useful for high rates of charge-discharge cycling. Synthesis of sub-micrometer size, porous particles of LiNi1/3Co1/3O2 using a tri-block copolymer as a soft template is carried out. LiNi1/3Co1/3O2 sample prepared at 900ºC exhibits a high rate capability and stable capacity retention of cycling. The electrochemical performance of LiNi1/3Co1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. Chapter 4 involves the synthesis of sub-micrometer size particles of LiMn2O4 in quaternary microemulsion medium. The electrochemical characterization studies provide discharge capacity values of about 100 mAh g-1 at C/5 rate and there is moderate decrease in capacity by increasing the rate of charge-discharge cycling. Studies also include charge-discharge cycling as well as ac impedance studies in temperature range from -10 to 40º C. Chapter 5 reports the synthesis of nano-plate LiFePO4 by polyol route starting from two reactants, namely, FePO42H2O and LiOH.2H2O. The electrodes fabricated out of nano-plate of LiFePO4 exhibit a high electrochemical activity. A stable capacity of about 155 mAh g-1 is measured at 0.2 C over 50 charge-discharge cycles. Mesoporous LiFePO4/C composite with two sizes of pores is prepared for the first time via solution-based polymer template technique. The precursor of LiFePO4/C composite is heated at different temperatures in the range from 600 to 800ºC to study the effect of crystalllinity, porosity and morphology on the electrochemical performance. The compound obtained at 700ºC exhibits a high rate capability and stable capacity retention on cycling with pore size distribution around 4 and 46nm. In Chapter 6, the electrochemical characterization of LiMn2O4 in an aqueous solution of 5 M LiNO3 is reported. A typical cell employing LiMn2O4 as the positive electrode and V2O5 as the negative electrode was assembled and the characterized by charge-discharge cycling in 5 M LiNO3 aqueous electrolyte. Furthermore, it is shown that Li+-ion in LiMn2O4 can be replaced by other divalent ions resulting in the formation of MMn2O4 (M = Ca, Mg, Ba and Sr) in aqueous M(NO3)2 electrolytes by subjecting LiMn2O4 electrodes to cyclic voltametry. Cyclic voltammetry and chronopotentiometry studies suggest that MMn2O4 can undergo reversible redox reaction by intercalation/deintercalation of M2+-ions in aqueous M(NO3)2 electrolytes.
3

High Capacity Porous Electrode Materials of Li-ion Batteries

Penki, Tirupathi Rao January 2014 (has links) (PDF)
Lithium-ion battery is attractive for various applications because of its high energy density. The performance of Li-ion battery is influenced by several properties of the electrode materials such as particle size, surface area, ionic and electronic conductivity, etc. Porosity is another important property of the electrode material, which influences the performance. Pores can allow the electrolyte to creep inside the particles and also facilitate volume expansion/contraction arising from intercalation/deintercalation of Li+ ions. Additionally, the rate capability and cycle-life can be enhanced. The following porous electrode materials are investigated. Poorly crystalline porous -MnO2 is synthesized by hydrothermal route from a neutral aqueous solution of KMnO4 at 180 oC and the reaction time of 24 h. On heating, there is a decrease in BET surface area and also a change in morphology from nanopetals to clusters of nanorods. As prepared MnO2 delivers a high discharge specific capacity of 275 mAh g-1 at a specific current of 40 mA g-1 (C/5 rate). Lithium rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template. It has a well crystalline structure with a broadly distributed mesoporosity but low surface area. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g-1 is obtained at a discharge current of 30 mA g-1. When the acid-treated sample is heated at 300 °C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g-1 at a discharge current density of 30 mA g-1. Solid solutions of Li2MnO3 and LiMO2 (M=Mn, Ni, Co, Fe and their composites) are more attractive positive electrode materials because of its high capacity >200 mAh g-1.The solid solutions are prepared by microemulsion and polymer template route, which results in porous products. All the solid solution samples exhibit high discharge capacities with high rate capability. Porous flower-like α-Fe2O3 nanostructures is synthesized by ethylene glycol mediated iron alkoxide as an intermediate and heated at different temperatures from 300 to 700 oC. The α-Fe2O3 samples possess porosity with high surface area and deliver discharge capacity values of 1063, 1168, 1183, 1152 and 968 mAh g-1 at a specific current of 50 mA g-1 when prepared at 300, 400, 500, 600 and 700 oC, respectively. Partially exfoliated and reduced graphene oxide (PE-RGO) is prepared by thermal exfoliation of graphite oxide (GO) under normal air atmosphere at 200-500 oC. Discharge capacity values of 771, 832, 1074 and 823 mAh g -1 are obtained with current density of 30 mA g-1 at 1st cycle for PE-RGO samples prepared at 200, 300, 400 and 500 oC, respectively. The electrochemical performance improves on increasing of exfoliation temperature, which is attributed to an increase in surface area. The high rate capability is attributed to porous nature of the material. Results of these studies are presented and discussed in the thesis.

Page generated in 0.0574 seconds