• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 17
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 187
  • 187
  • 27
  • 14
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The determination of trace elements in complex matrices by electrochemical techniques

Billing, Caren 27 March 2006 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MSc (Chemistry))--University of Pretoria, 2006. / Chemistry / unrestricted
112

Synthesis and characterisation of Pt-alloy oxygen reduction electrocatalysts for low temperature PEM fuel cells

Mohamed, Rhiyaad January 2012 (has links)
This dissertation the syntheses of Pt-based binary and ternary alloy electrocatalysts using the transition metals of Co and Ni are presented. These electrocatalysts were synthesised by an impregnation-reduction procedure at high temperature whereby Pt supported on carbon, (Pt/C (40 percent), was impregnated with the various metal and mixtures thereof and reduced at high temperatures in a H2 atmosphere. The procedure was also designed in such a way so as to prevent the oxidation of the support material (carbon black) during the alloy formation. The resultant nanoparticles (9-12 nm) of Pt3Co/C, Pt3Ni/C and Pt3Co0.5Ni0.5/C were also subjected to a post treatment procedure by acid washing (denoted AW) to produce electrocatalysts of Pt3Co/C-AW, Pt3Ni/C-AW and Pt3Co0.5Ni0.5/C-AW to study the effect of acid treatment on these electrocatalysts. The synthesised electrocatalysts were then characterised by a number of physical and electrochemical techniques and compared to that of commercial Pt/C (Pt/C-JM, HiSpec 4000) as well as Pt/C catalysts (Pt/C-900 and Pt/C-900-AW) treated under the same conditions used for the alloy synthesis. The electrocatalysts were then used to fabricate MEAs that were loaded into commercial single test cells and characterised by means of polarisation curves and Electrochemical Impedance Spectroscopy (EIS). The extensive physical characterisation included Powder X-Ray Diffraction (PXRD) analysis, Transmission Electron Microscopy (TEM), elemental analysis by Energy Dispersive Spectroscopy (EDS) and metal loading by Thermo-Gravimetric Analysis (TGA). These studies showed that Pt-based alloy electrocatalysts were successfully synthesised with particle sizes ranging from 9 - 12 nm, within their respective atomic ratios and whereby no significant loss of carbon support occurred. This indicated that significant sintering or electrocatalyst particles occurred when compared to that of the starting Pt/C catalyst (3 – 4 nm). From the combined results of the physical characterisation procedures, it was also shown that leaching as a result of acid washing was catalyst dependent with Ni containing catalysts showing a significant degree of leaching compared to that of Co containing catalysts. Electrochemical characterisation in terms of Electrochemical Active Surface Area (ECSA) by Cyclic Voltammetry (CV) and ORR activity by Rotating Disc Electrode (RDE) analysis revealed that a significant decrease in the ECSA resulted from the increase in particle size and this had a major influence on the ORR activity. Furthermore it was found that a significant improvement in the ORR activity was achieved by the synthesis of Pt-based alloys. It was also found that catalytic properties of the acid washed electrocatalysts were substantially different from that of non-acid washed electrocatalysts. The experimental data confirmed that it was possibly to achieve better catalytic performance as compared to that of Pt/C at a lower material cost when Pt is alloyed with base transition metals. The trend observed from the ORR activity studies by RDE was successfully repeated in the in-situ fuel cell testing in terms of mass activity of the electrocatalysts. Of the electrocatalysts studied under „real‟ fuel cell conditions Pt/C-JM had the best performance compared to the others, with the ternary Pt3Co0.5Ni0.5/C showing better catalytic performance compared to the Pt3Co/C electrocatalyst. This was found to be due to a higher charge transfer resistance observed in Pt3Co/C as compared to that of Pt3Co0.5Ni0.5/C which was similar than that of the commercial Pt/C-JM catalyst with both Pt3Co/C and Pt3Co0.5Ni0.5/C-AW having similar but higher ohmic resistances than that of Pt/C-JM as determined by electrochemical impedance spectroscopy. The results showed that a great potential exist to improve the catalytic performance of low temperature PEM fuel electrocatalysts at a reduced cost as compared to that of pure Pt provided a method of controlling the particle size was established.
113

Simultaneous electrosynthesis of alkaline hydrogen peroxide and sodium chlorate

Kalu, Eric Egwu January 1987 (has links)
Simultaneous electrosynthesis of alkaline hydrogen peroxide and sodium chlorate in the same cell was investigated. The alkaline hydrogen peroxide was obtained by the electroreduction of oxygen in NaOH on a fixed carbon bed while the chlorate was obtained by the reaction of anodic electrogenerated hypochlorite and hypochlorous acid in an external reactor. An anion membrane, protected on the anode side with an asbestos diaphragm was used as the separator between the two chambers of the cell. The effects of superficial current density (1.2 - 2.4 kA m⁻²), sodium hydroxide concentration (0.5 - 2.0 M) and catholyte flow (0.1 x 10⁻⁶ - 0.5 x 10⁻⁶ m³ s⁻¹) on the chlorate and peroxide current efficiencies were measured. The effect of peroxy to hydroxy mole ratio on the chlorate current efficiency was measured too. The cell was operated at fixed anolyte flow of 2.0 x 10⁻⁶ m³ s⁻¹, inlet and outlet temperatures of 27/33°C (anode side), 20/29°C (cathode side), cell voltages of 3.0 - 4.2 V (current density of 1.2 - 2.4 kA -m⁻²) and a fixed temperature of 70°C in the anolyte tank. Depending on the conditions, alkaline peroxide solution and sodium chlorate were cogenerated at peroxide current efficiency between 20% and 86%, chlorate current efficiency between 51.0% and 80.6% and peroxide concentration ranging from 0.069 M to 0.80 M. The cogeneration of the two chemicals was carried out at both concentrated (2.4 - 2.8 M) and dilute (0 - 0.5 M) chlorate solutions. A relative improvement on the current efficiencies at concentrated chlorate was observed. A chloride balance indicated negligible chloride loss to the catholyte. The results are interpreted in terms of the electrochemical and chemical kinetics and the hydrodynamics of the cell . / Applied Science, Faculty of / Chemical and Biological Engineering, Department of / Graduate
114

Part A. Development, evaluation and application of a rotating mercury pool electrode based on the electrochemical centrifugal analyzer ; Part B. Development and application of a microcarbon fiber electrode... ; Part C. Development and application... /

Liao, Anna January 1985 (has links)
No description available.
115

Deposition and kinetics studies of platinum nanoparticles on highly oriented pyrolytic graphite

遲寧, Chi, Ning. January 2000 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
116

Photoelectrochemical and solid state characterization of the spectroscopic and electronic properties of titanyl phthalocyanine

Lee, Paul Anthony, 1961- January 1988 (has links)
Various metal phthalocyanines have been used as dyes, catalysts, indicators, electrophotographic receptors and more recently as active elements in chemical sensors and photoconductive materials for solar energy conversion applications. Of the MPc's, VOPc, GaPc-Cl and TiOPc have shown promise for solar energy conversion devices. GaPc-Cl has also shown promise as a chemical sensor. Up to this point in time, the focus of Pc research in this group has been in the direction of characterizing the photoelectrochemical properties of these materials. Recently, solid state studies of TiOPc have been done to determine the electronic properties of a tetravalent metal Pc, such as conductivity and photoconductivity. Such solid state measurements are facilitated by the use of interdigitated microelectrode arrays which are coated with thin films of various Pc's.
117

The transpassive behaviour of the anodic film on Fe-Cr alloys.

Tonkinson, Charles Henry Llewelyn. January 1993 (has links)
This work was undertaken to investigate the transpassive behaviour of the anodic film on two Fe-Cr alloys, namely Fe18Cr and Fe18Cr2Mo in acidic aqueous media in the pH range 0.5 to 3.8. Two electrochemical techniques were used, namely cyclic voltammetry and chronoamperometry. The two primary experimental variables in the cyclic voltammetric experiments were pH and sweep rate (2 - 800 mV/s). The main variables in the chronoamperometric experiments were the size of the potential step, the number of potential steps and the starting and ending potentials. Secondary experimental variables were temperature (25, 90°C), rotation rate (0, 150 rad/s), and the artificial addition of cations (Fe2+, Fe3+ and Cr3+) to some of the solutions. A voltammetric anodic peak, referred to as peak A, occurs in the transpassive region of the above Fe-Cr alloys, followed by a region of secondary passivity and then oxygen evolution. It was this peak that was investigated by cyclic voltammetric methods. The peak A current response was independent of rotation rate at pH 3.8 but was dependent on rotation rate at pH 0.5 with solutions of intermediate pH showing a gradual change in rotation rate dependence. This indicated a predominantly solid state process in less acidic solutions (pH 2.4 & 3.8) whereas in strongly acidic solutions (pH 0.5) the action of ions in solution must contribute significantly towards peak A processes. A method was developed to correct the peak A current response for the current due to oxygen evolution. The results of this method indirectly confirmed the hypothesis that more than one oxidation process contributes to the peak A current response. A diagnostic plot for diffusion control was applied to the peak height of peak A. The diagnostic involves plotting the peak height over the square root of the sweep rate versus the square root of the sweep rate. A process under diffusion control would give a horizontal line for this diagnostic plot. At pH 0.5 and at slow sweep rates (less than or equal to 60 mV/s) the diagnostic plot gave a positive deviation from the horizontal and this deviation was enhanced as the temperature was increased. As the pH was increased (towards pH 3.8), the deviation from the horizontal at slow sweep rates gradually became negative and this deviation was again enhanced when the temperature was increased. This phenomenon is explained in terms of the role of the hydronium ion. From the addition of Fe2+, Fe3+, and Cr3+ to pH 0.5 and pH 3.8 solutions it was noted that ferrous ions increased the peak A current response more than chromic ions of the same concentration. Ferric ions slightly decreased the peak A current response. Based on these results, reports in the literature, and the apparent role of the hydronium ion, a partial scheme was proposed in order to explain the role of Fe and Cr, from the alloy substrate, in the anodic film in the transpassive region. In chronoamperometric experiments, stepping to the transpassive region confirmed the phenomenon of the rising transient. A quantitative nucleation model - which was based on previous models from the literature - was generated. The model was successfully fitted to two rising transients, one from the pH 3.8, and the other from the pH 0.5 solution. The model also allows for the presence of a pre-existent laver at the starting potential of a chronoamperometric experiment after the electrochemical cleaning procedure. The model incorporates both diffusion controlled and charge transfer controlled steps. A key concept in the model is that of nucleation and "slow death" of corrosion pits growing into the electrode. "Death" of a pit occurs when it is covered by a nucleating and or growing passivating film. The rising transients were only obtained on Fe-Cr alloys (with one exception) when stepping to the transpassive region and also only in solutions where peak A was obtained in a cyclic voltammetric experiment. The exception to this was that in the pH 0.5 solution and at 90°C, rising transients were obtained when stepping to the passive region. This did not occur at 25°C. Rising transients were also obtained on pure iron when stepping to the passive region. In addition to the rising transient, a reverse rising transient was discovered. This reverse rising transient (which generated a cathodic current) was obtained when stepping the potential cathodically from the transpassive region. It was shown that the occurrence of the reverse rising transient was dependent on the presence of a stable, transpassive anodic film before the potential step. One indirect result from the discovery of the reverse rising transient was that it indicates that secondary passivity exists at least 200 mV into the oxygen evolution region. / Thesis (M.Sc.)-University of Natal, 1993.
118

The Electrochemical Properties of the Mercury/lithium Nitrate-potassium Nitrate Eutectic Interface

Flinn, David R. 08 1900 (has links)
The original purpose of this investigation was to attempt to apply the coulostatic method directly to a molten salt system. The inability to duplicate the reported capacity data for this system resulted in an investigation of the probable cause of this discrepancy between the data obtained by these different methods (14, 15).
119

Use of sampling time and type of acclimation in the electrical conductivity assay for heat tolerance in bean cultivars

Teaford, Lynne A. January 1986 (has links)
Call number: LD2668 .T4 1986 T42 / Master of Science / Horticulture, Forestry, and Recreation Resources
120

Desenvolvimento de um eletrodo modificado com monocamadas auto-organizadas e sua utilização como biossesor /

Baldo, Thaísa Aparecida. January 2014 (has links)
Orientador: Marcos Fernando de Souza Teixeira / Coorientador: Carlos José Leopoldo Constantino / Banca: Orlando Fatibello Filho / Banca: Homero Marques Gomes / Resumo: O intuito desta pesquisa foi caracterizar eletrodos quimicamente modificados (EQM) pela formação de monocamadas auto-organizadas (SAM) com os tióis (11- mercaptoundecil)-N',N'',N'''-trimetilamônio e 6-(ferrocenil)hexanotiol sobre a superfície do eletrodo de ouro. E, ainda, verificar seu comportamento de transferência eletrônica com solução de hexacianoferrato(II) e (III) e sua aplicação como biossensor para glicose. As monocamadas auto-organizadas vêm sendo comumente usadas devido ao seu comportamento homogêneo, o que confere ao eletrodo maior sensibilidade e reprodutibilidade, tornando-se possível desenvolver eletrodos para vários fins e aplicações. Neste trabalho, foram estudadas as monocamadas formadas a partir dos tióis (11-mercaptoundecil)-N',N'',N'''- trimetilamônio e 6-(ferrocenil)hexanotiol. A caracterização eletroquímica e morfológica das monocamadas auto-organizadas foi realizada através da voltametria cíclica e microscopia eletrônica de varredura, respectivamente. Foi notado que as monocamadas mistas na proporção (1:2) apresentaram maior efeito catalítico, uma vez que se obtiveram maiores sinais analíticos, através do incremento das correntes anódicas e catódicas. A viabilidade da molécula de hexacianoferrato (III) foi verificada através da troca iônica destas moléculas eletroativas com as monocamadas auto-organizadas. Para a aplicação dos eletrodos modificados com monocamadas como biossensor para glicose, optou-se pela modificação na proporção (1:2) de (11-mercaptoundecil)-N',N'',N'''-trimetilamônio e 6- (ferrocenil)hexanotiol, respectivamente, assim como a utilização do mediador hexacianoferrato pré-concentrado por troca iônica durante 2 horas, em virtude que, neste tempo ocorreu uma maior concentração de espécies eletroativas sobre a superfície do ouro, tendo como favorecido o processo de transferência eletrônica. A construção do biossensor .. / Abstract: The purpose of this research was to characterize chemically modified electrodes (CME) by the formation of self-assembled monolayers (SAMs) with thiols (11- mercaptoundecyl)-N',N'',N'''trimethylammonium and 6-(ferrocenyl)hexanethiol on the surface of gold electrode. And also verify their behavior of electron transfer in solution with hexacyanoferrate (II) and (III) and its application as a biosensor for glucose. The self-assembled monolayers have been commonly used due to its homogenous, which gives the electrode higher sensitivity and reproducibility, becoming possible to develop electrodes for various purposes and applications. In this research, it was studied the monolayers formed from the thiols (11-mercaptoundecyl)- N',N'',N'''trimethylammonium and 6-(ferrocenyl)hexanethiol. Electrochemical and morphological characterization of self-assembled monolayers were performed using cyclic voltammetry and scanning electron microscopy, respectively. The electrochemical characterization of the different SAMs under study occurred in a solution of 0.10 mol L-1 hexacyanoferrate(II) and (III) potassium, verifying the electronic transfer mechanisms involved. It was noted that the self assembled monolayers in proportion (1:2) showed higher catalytic effect, since obtained higher analytical signals by increasing the anodic and cathodic currents. The viability of the hexacyanoferrate (III) molecule was verified by ion exchange these electroactive molecules with self-assembled monolayers. For the application of electrodes modified with monolayers as a biosensor for glucose, we opted for the change in the ratio (1:2) of (11-mercaptoundecyl)-N',N'',N'''trimethylammonium and 6- (ferrocenyl)hexanethiol, respectively, as well as the use of pre-concentrated by ion exchange mediator hexacyanoferrate for 2 hours, because that, this time there was a greater concentration of electroactive species on the surface of gold having favore / Mestre

Page generated in 0.0906 seconds