• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of graphitic adsorbents for water treatment using adsorption and electrochemical regeneration

Asghar, Hafiz Muhammad Anwaar January 2011 (has links)
In order to address ground and industrial water pollution, the University of Manchester has developed a novel and economic water treatment technology called the Arvia® process. This technology is being commercialized through a spin-out company, Arvia Technology Ltd. This process consists of adsorption and electrochemical regeneration in a single unit and can be carried out in batch or continuous modes where both operations can run simultaneously. This process has been successfully demonstrated for the removal and destruction of a number of organic contaminants using a graphite based adsorbent known as Nyex®1000. Nyex®1000 is an intercalation compound prepared from Chinese natural large fake graphite. This adsorbent has been found to be capable of fast adsorption and quick electrochemical regeneration in minutes due to its non-porous surface and high electrical conductivity. However, Nyex®1000 has a small adsorptive capacity for a number of organic pollutants and there is thus a need to develop new adsorbents with the aim of achieving high adsorptive capacity with maintaining good electrical conductivity. In this context, three routes for the development of adsorbents were selected, adsorbents developed through electrochemical intercalation, adsorbent developed through thermal and mechanical treatment of GIC-bisulphate and adsorbents developed through the formulation of composite materials. In order to strengthen the contributing effect of surface treatment, all raw graphite materials and developed adsorbents were characterized using Boehm titration, X-ray EDS, zeta potential, powder XRD, SEM, BET surface area, pore volume, particle size and bulk density techniques. These adsorbents were tested for the removal of a number of different target organic pollutants such as acid violet 17, mercaptans, phenol and humic acid using the Arvia® process. The performance of the developed materials was compared with the current adsorbent used in the Arvia® process i.e. Nyex®1000. A range of graphite types (synthetic graphite, Chinese natural large fake gra- phite, Madagascan medium fake graphite, natural vein graphite and recycled Abstract 27 vein graphite) were tested for the removal of acid violet 17 before and after electrochemical treatment in order to investigate the selection of the graphite types for the Arvia® process. The electrochemical surface treatment improved the adsorptive capacity by a factor of two for most of the graphite types tested and changed the surface of the graphite from hydrophobic to hydrophilic. Results obtained through surface characterization using Boehm titration, X-ray (EDS) elemental analysis and zeta potential measurements revealed a significant increase in oxygen containing surface functional groups on the surface of CNLFG in consequence of electrochemical surface treatment. The second type of adsorbent was developed through thermal and mechanical treatment of GIC bisulphate. It was tested for the removal of acid violet 17, mercaptans (ethane thiol & methyl propane thiol), phenol and humic acid using the Arvia® process. This material had twice the electrical conductivity of Nyex® 1000 and improved the adsorptive capacity by a factor of three for acid violet 17, approximately seven to eight for ethane thiol and methyl propane thiol, seven for phenol and two for humic acid. Starting and developed adsorbent materials were characterized using above mentioned techniques. The third type of adsorbent materials, three composite adsorbents were developed using high shear (wet) and compaction (dry) granulation methods. The composite adsorbent made through high shear wet granulation was found to have poor mechanical strength. The second and third composite adsorbents were developed through dry compaction granulation using carbon black, synthetic graphite and exfoliated graphite as raw materials. These adsorbents delivered improved adsorptive capacity for acid violet 17 by a factor of 100 and 9 respectively. Electrochemical regeneration efficiencies of around 100 % were obtained for these adsorbent materials. However, electrochemical parameters required to achieve 100 % regeneration, such as current density and regeneration time were found to vary depending on the adsorptive capacity of each adsorbent material for a particular polluting agent.
2

On the removal of odours and volatile organic compounds from gas streams using adsorption and electrochemical regeneration

Conti-Ramsden, Michael January 2012 (has links)
Adsorption combined with aqueous phase electrochemical regeneration has been shown by researchers at The University of Manchester (UoM) to offer an alternative approach to the removal of organics from waters and wastewater's. The process, based on a regenerable graphite intercalation compound (GIC) adsorbent, produces no secondary waste, is energy efficient and chemical free. A company, Arvia Technology Ltd., was set up in 2007 to commercialise the technology. As part of a growth and development strategy Arvia investigated other possible applications of the technology and found that odour removal from gas streams might be a good fit with technology features. This Engineering Doctorate (EngD) was a direct investigation into both this technology fit and into the market opportunity for technologies treating odours and volatile organic compounds (VOCs) in gas streams. The research conducted demonstrated that the technology in its different applied forms had certain process drawbacks. Where mass transfer, adsorption and regeneration were combined in a single unit, enhanced transfer as a result of higher pollutant Henry's coefficient was offset by lower adsorbate affinity which varied with hydrophobicity. This relation between affinity and hydrophobicity was different for oxygen functionalised aromatic molecules than for the aliphatic molecules studied. Where adsorption occurred in the gaseous phase and regeneration in the aqueous phase, disadvantages such as short adsorbent packed bed lifetimes and lower current efficiencies of oxidation as a result of adsorbate desorption were shown to be an issue. When the above process challenges were set against the challenging market environment and relatively small market opportunity (approx. £52 million in Europe, 2012) it was difficult to recommend further broad research into the technology. However it was concluded that the concept might still be usefully applied to odour and VOC abatement and that further work should focus on a two phase system with a gas phase adsorbent regeneration technique. The relation observed between adsorbate affinity, hydrophobicity and structure allowed the demonstration of the preferential removal of phenol from solutions containing significantly higher concentrations of aliphatic molecules. This finding is considered the most important project output as it highlights an opportunity to develop Arvia's water treatment technology into a targeted water treatment system for the removal of specific, industrially important, organic contaminants.
3

Water treatment using graphite adsorbents with electrochemical regeneration

Hussain, Syed January 2012 (has links)
Increased public awareness, stricter legislation standards, and environmental and health effects associated with water pollution are driving the development of improved wastewater treatment techniques. In order to meet these challenges, a novel and cost effective process has been developed at the University of Manchester to treat water contaminated with dissolved organics by exploiting a combination of adsorption and electrochemical regeneration. Adsorption of organics takes place on the surface of a non-porous and highly electrically conductive graphite adsorbent, followed by anodic electrochemical regeneration leading to oxidation of the adsorbed organic contaminants. The mechanism of degradation of adsorbed organics during electrochemical regeneration is particularly important from the point of view of the breakdown products. Ideally, complete oxidation of the adsorbed organics to CO2 and H2O should occur, but it is also possible that intermediate by-products may be formed. These breakdown products could be released into the water, be released as gases during the regeneration process or may remain adsorbed on the surface of the adsorbent. Information about the breakdown products is an important requirement for the commercial application of the process. This PhD project focused on an investigation of the formation of intermediate oxidation products released into the water (liquid phase) and with the regeneration gases. Phenol was chosen as a model pollutant and a graphite intercalation compound (GIC) adsorbent, Nyex®1000 (Arvia® Technology Ltd) was used. The main oxidation products formed during both batch and continuous adsorption with electrochemical regeneration were 1,4-benzoquinone, maleic acid, oxalic acid, 4-chlorophenol and 2,4-dichlorphenol. These compounds were detected in small concentrations compared to the overall concentration of the phenol removed. Two mechanisms of organic oxidation during electrochemical regeneration of the GIC adsorbents were identified. The first was the complete oxidation of the adsorbed species on the surface of the adsorbent and the second involved the indirect electrochemical oxidation of organics in solution. Breakdown products were found to be formed due the indirect oxidation of organics in solution. The formation of (chlorinated and non-chlorinated) breakdown products was found to be dependant on current density, pH, initial concentration, chloride content and the electrolyte used in the cathode compartment. The concentrations of chlorinated breakdown products can be minimized by using low current density, low initial concentrations, a chloride-free environment and/or treating the water over a number of adsorptions and regeneration cycles. On the other hand, non-chlorinated breakdown products can be minimized by applying higher current density and treating the solution over several cycles of adsorption and regeneration. Therefore, selection of optimum conditions is important to reduce the formation of undesirable breakdown products. The formation of free chlorine during batch electrochemical regeneration was also investigated under a range of operating conditions including the initial concentration of chloride ions, current density and pH. The outcomes of this study have important implications in optimising the conditions for the formation of chlorinated breakdown products and in exploring the role of electrochlorination for water disinfection. Analysis of the regeneration gases has revealed that the main components of the gases generated during the electrochemical regeneration of GIC adsorbents were CO2 and H2O. A preliminary mass balance has suggested that about 60% of the adsorbed phenol was oxidised completely to CO2. However, further work is needed to determine the fate of the remaining phenol. The surface characterization of the GIC adsorbent during adsorption and electrochemical regeneration was carried out using surface techniques including Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Energy dispersive X-ray spectroscopy (EDS) and Boehm titration. FTIR and Raman spectroscopy were found to be unsuitable for determining the concentration changes at the surface of the adsorbent during adsorption and regeneration. However, Boehm titration has shown that the GIC adsorbent has phenolic, carboxylic and lactonic groups. The concentrations of phenolic groups were found to be higher after phenol adsorption and to decrease during electrochemical regeneration. The results of EDS analysis gave results which were consistent with these observations. Another important aspect of this PhD project was to explore the potential application of adsorption and electrochemical regeneration using GIC adsorbents to water disinfection. A model microorganism E. coli was selected for adsorption and electrochemical regeneration studies under a range of experimental conditions. This study has provided evidence that the process of adsorption and electrochemical regeneration using GIC adsorbents can be used for disinfection of water. Disinfection of water was found to be a combination of two processes: the adsorption of microorganisms followed by their deactivation on the surface; and electrochemical disinfection in solution due to indirect oxidation. The possible disinfection mechanisms involved in these processes include electrochlorination, pH changes and deactivation by direct oxidation of microorganisms. Scanning electron microscopy was found to be a useful tool for investigating changes in surface morphology of microorganisms during adsorption and electrochemical regeneration. The disinfection of a variety of bacteria, fungi and yeasts was tested and evaluated. However, disinfection of protozoa including C. parvum was not demonstrated successfully. It was also demonstrated that the process of adsorption with electrochemical regeneration using GIC adsorbents can be used to simultaneously remove organics and to disinfect microorganisms.
4

Water treatment by adsorption and electrochemical regeneration : development of a liquid-lift reactor

Liu, Dun January 2015 (has links)
Efficient and economic treatment of low concentration organic pollutants in water, wastewater or industrial process streams is normally very difficult to achieve. Activated carbon has been widely used for contaminant adsorption, but there are problems associated with its regeneration. In this work, a novel, non-porous, highly-conducting graphite intercalation compounds material (GIC) is used. The use of such an adsorbent can significantly reduce the time required to achieve both equilibrium and electrochemical regeneration. This character allows the design of an innovative treatment process that can adsorb contaminants and electrochemically regenerate itself simultaneously within a single unit. A novel liquid-lift reactor for water treatment by an adsorption and electrochemical regeneration process is developed in this work. Batch experiments are carried out to determine the adsorption kinetics and equilibrium isotherm of adsorption Acid Violet 17 onto the GIC adsorbent. The experimental kinetic data are analyzed using the pseudo-first order, pseudo-second order, intra-particle diffusion and three-stage kinetic models. The linear pseudo-second order model offers the highest r2 correlation coefficient. The experimental isotherm data are analyzed using Langmuir, Freundlich and Tempkin isotherm models. The non-linear Langmuir model gives the highest r2 correlation coefficient. High regeneration efficiency (more than 90%) over a number of cycles is obtained by passing a charge of 6.4 C g-1 of the GIC adsorbent, at a current density of 5 mA cm-2 using a batch, sequential adsorption (60 min) and electrochemical regeneration (30 min) process. The simultaneous adsorption and regeneration process indicates that 100 % AV 17 can be removed in 60 min (4L of 100 mg L-1 AV 17 solution, 140g of the GIC adsorbent, current density of 5mA cm-2). The flow behaviour in the electrochemical reactor has been studied using a pulse tracer technique. The residence time distribution shows that the flow behaviour in the liquid-spouted reactor can be regarded as a plug flow in series with a continuous stirred tank reactor. For the batch adsorption system, a “parallel adsorption barren well hypothesis” is proposed in this thesis. For the batch simultaneous adsorption and electrochemical regeneration system, a multi-parameter model is proposed in this thesis.
5

Régénération électrochimique de carbones nanoporeux utilisés pour le piégeage de micropolluants / Electrochemical regeneration of nanoporous carbons for micropollutants trapping

Gineys, Mickael 03 July 2015 (has links)
Les carbones activés, de par leur nanotexture développée, sont performants pour l’élimination de micropolluants organiques à l’état de traces. Ils trouvent une place prépondérante au sein des usines de traitement pour la dépollution de l’eau. Néanmoins, l’adsorption de ces composés, conduit à la saturation du matériau selon un processus d’adsorption irréversible. Un procédé électrochimique capable d’opérer à la régénération in situ des adsorbants carbonés chargés en polluants est proposé. L’applicabilité du procédé a été évaluée sur une grande diversité de micropolluants rencontrés dans les effluents traités. Ces molécules s’adsorbent préférentiellement au niveau des ultramicropores via des interactions dispersives de type π-π. La régénération électrochimique de l’adsorbant s’effectue grâce à l’application d’une polarisation, qui génère une interface chargée et induit un champ électrostatique entre les deux électrodes. La décomposition de l’électrolyte, confiné dans les pores, engendre des effets de pH localisés, responsables de la dissociation de la molécule adsorbée. La désorption sous polarisation fait intervenir des répulsions électrostatiques entre la surface chargée du matériau carboné et le polluant dissocié. Ce procédé de régénération, applicable à de nombreux micropolluants, montre des efficacités différentes selon de la nature du polluant adsorbé. La désorption est favorisée pour des polluants de petite taille, facilement ionisables et solubles ; des efficacités de régénération élevées (jusqu’à 80 %) à partir du quatrième cycle sont reportées. Une partie des polluants est piégée irréversiblement soit parce qu’ils sont bloqués dans les ultramicropores, soit parce qu’ils s’adsorbent au niveau de sites énergétiques ou via des interactions plus spécifiques. L’obstruction cumulative de la porosité par un adsorbat volumineux par exemple, engendre une diminution des efficacités de régénération avec la répétition des cycles. / Due to their developed porosity, the activated carbons are efficient for the removal of organic micropollutants at trace concentration. They find an important place in wastewater treatment for water decontamination. Nevertheless, the adsorption of these compounds leads to the adsorbent saturation and therefore makes the process irreversible. We have developed an electrochemical process which is able to operate to the in situ adsorbent regeneration. The process applicability was assessed on a wide range of micropollutants, found in the treated effluents. These molecules are adsorbed in the ultramicropores through π-π interactions. The electrochemical regeneration of the loaded adsorbent is performed by applying a polarization, which generates an electrically charged carbon surface and induced an electrostatic field between the two electrodes. The electrochemical decomposition of the electrolyte inside the porosity, leads to local pH effects which are responsible of the dissociation of the adsorbed molecule. The desorption under polarization implies electrostatic repulsions between the polarized carbon surface and the dissociated pollutant. This regeneration process can be broadened to numerous micropollutants and shows an efficiency which depends on the adsorbat nature. We have shown that the desorption of small pollutants which are easily ionisable and soluble is promoted. High desorption levels until 80 % after four desorption cycle are indeed reported. A part of the adsorbed molecules is trapped irreversibly either because they are blocked in the ultramicropores or due to the micropollutant adsorption at high energy sites and/or through specific strong interactions. For example, the porosity obstruction caused by a voluminous molecule leads to the decrease of the regeneration efficiency along the cycles repetition.

Page generated in 0.1417 seconds