• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formation of metal-gallium nitride contacts

Maffeis, Thierry Gabriel Georges January 2001 (has links)
The influence of pre-metallisation surface preparation on the structural, chemical, and electrical properties of metal-nGaN interfaces has been investigated by X-ray Photoemission Spectroscopy (XPS), current-voltage measurement (I-V) and cross section Transmission Electron Microscopy (TEM). XPS analysis showed that the three GaN substrate treatments investigated, ex-situ HF etch, in-situ anneal in Ultra-High-Vacuum (UHV), and in-situ Ga reflux cleaning in UHV result in surfaces increasingly free of contaminants. Additionally, the three treatments are found to induce increasingly larger upward band bending. Ag-nGaN contacts formed after Ga reflux cleaning exhibit a Schottky barrier height of 0.80 eV and an ideality factor of 1.56, as determined by I-V.XPS and TEM characterisation of Au-nGaN formed after the three pre-metallisation surface treatments show that HF etching and UHV annealing produce abrupt, well-defined interfaces. Conversely, GaN substrate cleaning in a Ga flux results in Au/GaN intermixing. I-V characterisation of Au-nGaN contacts yield a Schottky barrier height of 1.25 eV with very low ideality factor and very good contact uniformity for the pre-metallisation UHV anneal while the Ga reflux cleaning result in a much lower barrier (0.85 eV), with poor ideality and uniformity. I-V and XPS results suggest a high density of acceptor states at the surface, which is further enhanced by UHV annealing. The mechanisms of Ga-nGaN, Ag-nGaN and Au-nGaN Schottky barrier formation are discussed in the context of the Metal-Induced Gap States model (MIGS) Unified Defect Model (UDM) and Cowley-Sze model.

Page generated in 0.1357 seconds