Spelling suggestions: "subject:"électrochimie moléculaire"" "subject:"electrochimie moléculaire""
1 |
Investigation of charge transport/transfer and charge storage at mesoporous TiO2 electrodes in aqueous electrolytes / Etude des processus de transport / transfert et accumulation de charges au sein d’un film semi-conducteur mésoporeux de TiO2 en solution électrolytique aqueuseKim, Yee Seul 08 November 2018 (has links)
Améliorer notre compréhension des mécanismes de transport/transfert de charges et de stockage de charges dans les films d'oxyde métallique semi-conducteur mésoporeux transparents (fonctionnalisés ou non par des chromophores redox-actifs) dans des électrolytes aqueux est d'une importance fondamentale pour le développement et l'optimisation d'une large gamme de dispositifs de production ou de stockage d'énergie éco-compatibles et/ou éco-durables (cellules solaires à colorants, batteries, photoélectrolyseurs, ….). Dans ce but, des films de TiO2 semi-conducteur mésoporeux préparés par dépôt sous incidence rasante (GLAD-TiO2) ont été sélectionnés pour leur grande surface spécifique, leur morphologie bien contrôlée, leur transparence élevée dans le visible et leur semiconductivité bien définie qui peut être facilement ajustée par l’application d’un potentiel externe, autorisant ainsi leur caractérisation aisée par spectroélectrochimie en temps réel. Nous avons d'abord étudié le transfert et transport de charges dans des électrodes GLAD-ITO et GLAD-TiO2 fonctionnalisées par une porphyrine de manganèse redox-active jouant à la fois le rôle de chromophore et de catalyseur. Nous avons démontré que la réponse électrochimique des électrodes ainsi modifiées, enregistrée en l'absence ou en présence du substrat O2, dépend fortement de la conductivité du film mésoporeux. En utilisant la voltamétrie cyclique couplée à la spectroscopie d'absorption UV-visible, nous avons pu extraire des informations clés telles que la vitesse du transfert d'électrons hétérogène entre le chromophore redox immobilisé et le matériau semi-conducteur, et aussi pu rationaliser le comportement électrochimique spécifique obtenu sur un film GLAD-TiO2 modifié par la porphyrine en condition catalytique. En parallèle, nous avons développé un procédé de fonctionnalisation de ces films d'oxyde métallique mésoporeux (en l’occurrence des films GLAD-ITO) par électrogreffage de sels d'aryldiazonium générés in situ, permettant d'obtenir des électrodes fonctionnalisées avec un taux de recouvrement surfacique élevé et une stabilité dans le temps particulièrement bonne en conditions hydrolytiques. Nous avons également étudié le stockage de charges au sein d’électrodes GLAD-TiO2 dans divers électrolytes aqueux. Nous avons notamment démontré pour la première fois qu’une insertion rapide, massive et réversible de protons peut être effectuée dans des films de TiO2 nanostructurés amorphes immergés dans un tampon aqueux neutre, le donneur de protons étant alors la forme acide faible du tampon. Nous avons également démontré que ce processus de stockage d’électrons couplé à l’insertion de protons peut se produire sur toute la gamme de pH et pour un vaste panel d'acides faibles organiques ou inorganiques, mais aussi de complexes aqueux d'ions métalliques multivalents, à condition que le potentiel appliqué et le pKa de l'acide faible soient correctement ajustés. / Better understanding of the mechanisms of charge transport/transfer and charge storage in transparent mesoporous semiconductive metal oxide films (either functionalized or not by redox-active chromophores) in aqueous electrolytes is of fundamental importance for the development and optimization of a wide range of safe, eco-compatible and sustainable energy producing or energy storage devices (e.g., dye-sensitized solar cells, batteries, photoelectrocatalytic cells, …). To address this question, mesoporous semiconductive TiO2 films prepared by glancing angle deposition (GLAD-TiO2) were selected for their unique high surface area, well-controlled morphology, high transparency in the visible, and well-defined semiconductivity that can be easily adjusted through an external bias, allowing thus their characterization by real-time spectroelectrochemistry. We first investigated charge transfer/transport at GLAD-ITO and GLAD-TiO2 electrodes functionalized by a redox-active manganese porphyrin that can play both the role of chromophore and catalyst. We demonstrate that the electrochemical response of the modified electrodes, recorded either in the absence or presence of O2 as substrate, is strongly dependent on the mesoporous film conductivity. By using cyclic voltammetry coupled to UV-visible absorption spectroscopy, we were able to recover some key information such as the heterogeneous electron transfer rate between the immobilized redox-active dye and the semiconductive material, and also to rationalize the specific electrochemical behavior obtained at a porphyrin-modified GLAD TiO2 film under catalytic turnover. In parallel, we developed a new functionalization procedure of mesoporous metal oxide films (GLAD-ITO in the present case) by electrografting of in-situ generated aryldiazonium salts, allowing for modified electrodes characterized by both a high surface coverage and a particularly good stability over time under hydrolytic conditions. Also, we investigated charge storage at GLAD-TiO2 electrodes under various aqueous electrolytic conditions. We notably evidenced for the first time that fast, massive, and reversible insertion of protons can occur in amorphous nanostructured TiO2 films immersed in near neutral aqueous buffer, with the proton donor being the weak acid form of the buffer but not water. We also demonstrated that this proton-coupled electron charge storage process can occur over the entire range of pH and for a wide range of organic or inorganic weak acids, but also of multivalent metal ion aquo complexes, as long as the applied potential and pKa of weak acid are properly adjusted.
|
Page generated in 0.0951 seconds