• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrochemical behaviour of boron-doped diamond electrodes

Naidoo, Kaveshini 21 November 2005 (has links)
Conducting diamond electrodes provide unique advantages for electrochemistry such as a wide potential window, low baseline current, chemical inertness and resistance to fouling. De Beers boron-doped diamond electrodes, manufactured by chemical vapour deposition and containing varying amounts of boron, were therefore investigated in order to determine their suitability for future electrochemical applications. These electrodes were initially characterised using techniques such as SEM, LA-ICP-MS, Raman spectroscopy and XPS. The electrochemical behaviour of these electrodes was investigated in two redox systems (potassium iron (III) cyanide and cerium (III) sulphate) and two biological systems (dopamine and ascorbic acid). These results were compared against that of the conventional glassy carbon electrode. Porous boron-doped diamond, a novel electrode material, was used for the electrochemical detection of thyroid hormones (L-T3 and L-T4). These hormones have never previously been investigated using a boron-doped diamond electrode. The De Beers boron-doped diamond electrode was found to outperform the conventional glassy carbon electrode, which fouled very easily, in the detection of dopamine. Peak separation between dopamine and the interfering ascorbic acid was attained at a pretreated boron-doped diamond electrode. The feasibility of detecting thyroid hormones using a porous boron-doped diamond electrode was demonstrated, and the electrode material was patented. / Dissertation (MSc (Chemistry))--University of Pretoria, 2006. / Chemistry / unrestricted

Page generated in 0.1006 seconds