Spelling suggestions: "subject:"electrolytic cell"" "subject:"lectrolytic cell""
1 |
The behaviour of sulfur dioxide, oxygen, sulfuric acid and water in an electrolytic cellAssaly, T.C. January 1945 (has links)
[No abstract submitted] / Science, Faculty of / Chemistry, Department of / Graduate
|
2 |
Assessment of coal and graphite electrolysisSathe, Nilesh 22 May 2006 (has links)
No description available.
|
3 |
Zvýšení citlivosti stanovení zlata technikou elektrochemického generování těkavých specií s detekcí AAS / Sensitivity increasing of gold determination by electrochemical volatile species generation with AAS detectionVacek, Tomáš January 2013 (has links)
This thesis is focused on increasing the senstitivity of gold determination by electrochemical volatile species generation using two different types of electrolytic cells in continuous flow setting. Externally heated quartz tube atomizer was used as means of atomization and detection of gold with atomic absorption spectrometer. Generation parameters were optimized for electrolytic cell with an ion exchange (nafion) membrane. After selection of new cathode material (Cu) the carrier gas (Ar) flow rate was optimized, where an additional inlet of carrier gas was found to have possitive effect on increasing the sensitivity of determination of gold and efficiency of volatile specie transport to the atomizer. Experiments with Antifoam B showed possitive effect on generation, thus calibration was carried out for optimized experimetal conditions reaching detection limit of 0,53 mg.dm−3 . The efficiency of volatile specie transfer from liquid to gaseous phase was determined between 60 - 65 % by measuring the residual gold content in liquid waste by F-AAS method. Subsequently the effieciency of electrolytic generation of volatile gold specie with radioactive tracer isotopes and autoradigraphy was determined to 0,6 %. These methods confirmed adsorption of generated species on apparatus surface. Using ICP-MS as...
|
4 |
Flexographic deinking with electric field technology by destabilization and flotationShemi, Akpojotor 02 July 2008 (has links)
Every year, millions of tons of paper are diverted from landfills and recycled. Newspaper constitutes a large portion of total paper recycled, providing a cheap source of raw material for the paper industry and helping sustainable forestry. The recycling of newsprint paper involves the separation of ink from the newsprint, which is done either by flotation or washing. Conventional flotation processes for separating ink are not adequate for newsprint printed using flexography printing technique and with water-based ink. The removal of these flexographic water-based inks by washing is a better alternative. However, one drawback of washing is that it has lower yield. In addition, the subsequent wash filtrate is difficult and costly to decontaminate. The overall goal is to develop a combination of processes that can remove ink from a feedstock that contains up to 100% flexographic ink newsprint; in the context of process variables with known effects.
In the present work the objectives are to (1) demonstrate that incorporating an electric field into a conventional deinking process improves deinking efficiency, (2) propose a mechanism of how incorporating an electric field helps to improve deinking efficiency, (3) demonstrate that an electric field can decontaminate water containing flexographic inks and identify the mechanism behind electric field clarification of water, and (4) demonstrate that by incorporating electric fields into both the flotation deinking stage and water decontamination, the target deinking efficiency can be achieved.
|
5 |
Výroba vodíku z obnovitelného zdroje elektrické energie / Hydrogen production from renewable energy sourceLakva, Petr January 2013 (has links)
Hydrogen, as a form of storage for the excess energy from renewable sources, is a technically and economically viable option. However, the technology is not mature enough to compete with the other renewable energy possibilities. In this thesis, a study based on coupling two 330 kW wind-turbines with an NELP. 40 electrolyzer this connection should improve the utilization of wind power. In this thesis are two options of energy utilization. The energy produced by the wind-turbine is stored in the form, of hydrogen and is then delivered for consumption at variable power through a fuel cell, second option is use of produced hydrogen as alternative fuel for cars. This study is a general introduction for the wind energy system with hydrogen storage. Future studies should be more complex and detailed in order to understand and model the system with greater accuracy and to increase the possibility for the utilization of wind energy to generate hydrogen. This would enhance wind power competitiveness and sustain the continuously changing world energy demands.
|
Page generated in 0.0644 seconds