• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 718
  • 31
  • 18
  • 6
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 1053
  • 508
  • 375
  • 364
  • 343
  • 98
  • 91
  • 90
  • 89
  • 81
  • 68
  • 66
  • 65
  • 64
  • 63
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Power Scaling of High Power Solid State Lasers.

Oh, Bumjin 01 January 2018 (has links) (PDF)
The solid-state laser is one of the most widely used lasers in scientific research and industrial applications. This thesis describes detailed investigations of two modern architectures of high power cw solid-state lasers, a 20 W diode-pumped Yb:YAG thin disc laser and 300 W diode-pumped Nd:YAG rod laser. With the thin disc laser architecture, the signal beam must fit to the pump area on the disc defined by the multi-pass diode pump configuration. The beam propagation, beam diameter, phase and thermal effects for various cavity configurations are investigated theoretically and experimentally. In addition, the internal loss, small signal gain, and thermal lensing effect are essential properties to construct the laser system but usually unknown. The theories and methodologies to obtain these properties are presented and the experimental results are compared. In a second phase of the project, the multi-mode and single-mode operation of a high power diode-pumped rod laser system are examined and compared to the thin disc system. Thermal effects on the phase, beam quality and brightness are examined and future applications and improvements considered.
102

Mode-locked Laser Based on Large Core Yb3+-Doped Fiber

Jia, Fei 01 January 2018 (has links) (PDF)
The thesis reviews principle of laser cavity and gives a general introduction to modelocked laser (MLL). By using Yb3+-doped fiber as gain medium, passive MLL cavity is developed in experiment, aiming to obtain femtosecond pulses with high pump power from 25W to 35W. The gain medium fiber with 65µm core diameter is cleaved with one flat end and another angled. Pump laser with 976nm wavelength is coupled into Yb3+ -doped fiber to excite signal from 1020nm to 1040nm in the core. 9W is threshold for laser setup. After locking all modes, picosecond pulses are output from laser cavity and coupled into dispersion delay fiber. By compressing pulse width, pulses are in soliton mode and then femtosecond laser pulses are obtained pulses are obtained. To measure ultrafast pulse width effectively, an auto-correlator based on Mach–Zehnder interferometer is developed. In the receiver terminal, a photodiode with range 320 nm to 1000 nm is used to detect signal and two photon absorption (TPA) method is applied.
103

The Radiation Quality Factor Of Vertically Polarized Spherical Antennas Above A Conducting Ground Plane

Chang, Hsieh-chi 01 January 2012 (has links) (PDF)
The radiation quality factor of small vertically polarized antennas above a ground plane is investigated. Although the quality factor of small antennas in free space has been investigated extensively in the past, the exact effect of a conducting ground plane on the antenna bandwidth is not clearly understood. In this thesis, quality factors of vertically polarized antennas above a ground plane are computed and compared with their free-space counterparts. The theoretical results on quality factors are validated with simulations of electrically small spherical helix antennas.
104

Multi-frequency Atmospheric Refractivity InversionDissertation

Xu, Luyao January 2019 (has links)
No description available.
105

Electromagnetic Time-Reversal Imaging and Tracking Techniques for Inverse Scattering and Wireless Communications

Fouda, Ahmed Elsayed 08 August 2013 (has links)
No description available.
106

Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

Trichopoulos, Georgios C. 08 August 2013 (has links)
No description available.
107

Singularity-Free Boundary Methods for Electrostatics and Wave Scattering

Alkhateeb, Osama 07 May 2012 (has links)
No description available.
108

Integrated Thin-film Lithium Niobate Devices and Circuits for Nonlinear- and Quantum-optic Applications

Abdelsalam, Kamal Mohamed Khalil 01 January 2021 (has links) (PDF)
Implementation of high-performance photonic integrated devices and circuits is becoming a growing essential need for a plethora of classical and nonclassical applications such as, high-speed telecom and data-com systems, frequency metrology and quantum communication systems. These applications require a combination of linear optics (e.g., beam splitters and filters), fast modulation (e.g., electro-optic modulators) along with nonlinear optical processes. Thin-film lithium niobate (TFLN) stands as an ideal platform for that purpose due to its high electro-optic, nonlinear-optic, and ferroelectric effects, its wide transparency window, and its compatibility with fabrication technologies, especially, standard silicon photonics. This work aims at harnessing the unique properties of TFLN for implementation of high-performance integrated devices and circuits for nonlinear- and quantum-optic applications. First, we demonstrate thin-film periodically-poled lithium niobate (TF-PPLN) waveguides with the highest reported nonlinear conversion efficiency on TFLN to date. Then, we introduce a new class of wideband nonmagnetic and linear optical isolators, based on nonlinear frequency conversion and spectral filtering. We utilize TF-PPLN devices to experimentally demonstrate our novel isolator system with a wide bandwidth and high optical isolation ratio. We introduce and demonstrate efficient quantum-correlated photon-pair sources via nonlinearities in TF-PPLN waveguides. We also demonstrate tunable dual-channel ultra-narrowband Bragg grating filters on TFLN. All the demonstrated devices pave the path for implementation of high-performance advanced nonlinear and quantum photonic integrated circuits (PICs), as discussed in the future work directions.
109

Development of Holographic Phase Masks for Wavefront Shaping

Mohammadian, Nafiseh 01 January 2022 (has links) (PDF)
This dissertation explores a new method for creating holographic phase masks (HPMs), which are phase transforming optical elements holographically recorded in photosensitive glass. This novel hologram recording method allows for the fast production of HPMs of any complexity, as opposed to the traditional multistep process, which includes the design and fabrication of a master phase mask operating in the UV region before the holographic recording step. We holographically recorded transmissive HPMs that are physically robust (they are recorded in a silicate glass volume), can handle tens of kilowatts of continuous wave (CW) laser power, are un-erasable, user defined, require no power to operate, can work over a wavelength band ranging from 350 to 2500 nm, and can modify the wavefront of narrow line or broad band coherent sources. The HPMs can be wavelength-tunable by angular adjustment over tens or even hundreds of nanometers. The HPMs incorporate the phase information in the bulk of a volume Bragg grating (VBG) resulting in only a single diffraction order and up to 100% diffraction efficiency. Recording in thick photosensitive medium also enables the multiplexing of HPMs in a single monolithic element. While these HPMs are physically overlapped in the space, they provide independent phase profiles, efficiencies, spectral and angular acceptances. Multiplexing HPMs allows splitting or combining of multiple beams while affecting their wavefronts individually. We also developed a new holographic phase mask of reflective-type. This device provides us the ability of recording RBGs with transversely shifted parts in the larger aperture which upon reconstruction will produce different phases to different parts of the diffracted beam. RBG's diffraction spectrum possesses a very narrow bandwidth, and the holographic recording technique allows to multiplex multiple gratings into a single volume of PTR glass. If each of these Bragg wavelengths is assigned with a specific spatial mode, it can be achieved simultaneous spatial and spectral multiplexing. As a separate research topic, we look at how holographic optical elements (HOEs) can be used for improving the capabilities of the existing generation of head-up displays (HUDs), resulting in smaller, lighter units with a larger eye-box. Currently, surface relief gratings recorded in photosensitive polymers that are susceptible to the environmental conditions are used in HOE-based HUDs. This has an impact on their reliability and overall lifespan. We investigated a specific holographically recorded in the volume of photo-thermo-refractive glass transmissive gratings that generated multiple diffracted beams due to their operation in Raman-Nath regime. The Raman Nath gratings were successfully used to create an array of images because in augmented reality systems, this approach can be used to enhance the size of the exit pupil. These image splitting elements, due to the features of PTR glass, have a great resistance to temperature gradients, mechanical shocks, vibrations, and laser radiation.
110

Heterogeneous Integrated Photonics for Nonlinear Frequency Conversion and Polarization Diversity

Sjaardema, Tracy 01 January 2020 (has links) (PDF)
Silicon has proven to be one of the materials of choice for many integrated photonic applications. However, silicon photonics is limited by certain material shortcomings. Two shortcomings addressed in this work are zero second-order optical nonlinearity, and the lack of methods available to achieve broadband polarization diversity. Heterogeneous integrated solutions for these shortcomings of silicon photonics are presented in this work. First, nonlinear frequency conversion is demonstrated with thin-film lithium niobate on silicon substrates. The method for reaching the highest-achieved second-harmonic generation conversion efficiency, using active monitoring during periodic poling, is discussed. Additionally, a cascaded approach for generating higher-order harmonics is presented, along with a theoretical model to extract conversion efficiencies from measurements performed with pulsed sources. Initial work to integrate second-order and third-order nonlinearities together using thin-film lithium niobate and chalcogenide is also presented. Second, a spatially-mapped anisotropic material platform that exhibits broadband polarization diversity is discussed. This platform currently demonstrates polarization beam splitters, and polarization-selective beam taps and microring resonators, whose results are presented. Also discussed is a method to include polarization rotators to demonstrate full polarization diversity, as well as designs and initial work to expand the platform to operate at longer wavelengths, specifically those in the telecom band.

Page generated in 0.0455 seconds