• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Redundancy-aware Electromigration Checking for Mesh Power Grids

Chatterjee, Sandeep 21 November 2013 (has links)
Electromigration is re-emerging as a significant problem in modern integrated circuits (IC). Especially in power-grids, due to shrinking wire widths and increasing current densities, there is little or no margin left between the predicted EM stress and that allowed by the EM design rules. Statistical Electromigration Budgeting estimates the reliability of the grid by considering it as a series system. However, a power grid with its many parallel paths has much inherent redundancy. In this work, we propose a new model to estimate the MTF and reliability of the power grid under the influence of EM, which accounts for these redundancies. To implement the mesh model, we also develop a framework to estimate the change in statistics of an interconnect as its effective-EM current varies. The results indicate that the series model gives a pessimistic estimate of power grid MTF by a factor of 3-4.
2

Redundancy-aware Electromigration Checking for Mesh Power Grids

Chatterjee, Sandeep 21 November 2013 (has links)
Electromigration is re-emerging as a significant problem in modern integrated circuits (IC). Especially in power-grids, due to shrinking wire widths and increasing current densities, there is little or no margin left between the predicted EM stress and that allowed by the EM design rules. Statistical Electromigration Budgeting estimates the reliability of the grid by considering it as a series system. However, a power grid with its many parallel paths has much inherent redundancy. In this work, we propose a new model to estimate the MTF and reliability of the power grid under the influence of EM, which accounts for these redundancies. To implement the mesh model, we also develop a framework to estimate the change in statistics of an interconnect as its effective-EM current varies. The results indicate that the series model gives a pessimistic estimate of power grid MTF by a factor of 3-4.

Page generated in 0.1305 seconds