• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dielectric-graphene integration and electron transport in graphene hybrid structures

Fallahazad, Babak 10 September 2015 (has links)
Dielectrics have been an integral part of the electron devices and will likely resume playing a significant role in the future of nanoelectronics. An important step in assessing graphene potential as an alternative channel material for future electron devices is to benchmark its transport characteristics when integrated with dielectrics. Using back-gated and dual gated graphene field-effect transistors with top high-k metal-oxide dielectric, we study the dielectric thickness dependence of the carrier mobility. We show the carrier mobility decreases after deposition of metal-oxide dielectrics by atomic layer deposition (ALD) thanks to the Coulomb scattering by charged point defects in the dielectric. We investigate a novel method for the ALD of metal-oxide dielectrics on graphene, using an ultrathin nucleation layer that enables the realization of graphene field-effect transistors with aggressively scaled gate dielectric thickness. We show the nucleation layer significantly affects the quality of the subsequently deposited dielectric. In addition, we study transport characteristics of double layer systems. We demonstrate heterostructures consisting of two rotationally aligned bilayer graphene with an ultra-thin hexagonal boron nitride dielectric in between fabricated using advanced layer-by-layer transfer as well as layer pickup techniques. We show that double bilayer graphene devices possess negative differential resistance and resonant tunneling in their interlayer current-voltage characteristics in a wide range of temperatures. We show the resonant tunneling occurs either when the charge neutrality points of the two bilayer graphene are energetically aligned or when the lower conduction sub-band of one layer is aligned with the upper conduction sub-band of the opposite layer. Finally, we study the Raman spectra and the magneto-transport characteristics of A-B stacked and rotationally misaligned bilayer graphene deposited by chemical-vapor-deposition (CVD) on Cu. We show that the quantum Hall states (QHSs) sequence of the CVD grown A-B stacked bilayer graphene is consistent with that of natural bilayer graphene, while the sequence of the QHSs in the CVD grown rotationally misaligned bilayer graphene is a superposition of monolayer graphene QHSs. From the magnetotransport measurements in rotationally misaligned CVD-grown bilayer we determine the layer densities and the interlayer capacitance. / text
2

Nanostructured Materials for Pseudocapacitors and Single-Electron Devices

Pu, Long January 2014 (has links)
As a result of increasing demand of power in the modern society, energy storage/consumption is playing a more important role on future economics. Therefore energy storage systems which are more environmentally friendly, low-cost and high-performance have attracted much attention. Among electrochemical systems, supercapacitors are considered as a prominent candidate for the modern energy storage systems due to the high power density, high charge/discharge rate, and long lifetimes. Nevertheless, the performance of supercapacitors is limited by the significant disadvantage of low energy density. Metal oxides with high pseudocapacitance such as MnO2 are used as the electrode materials for supercapacitors to resolve the lack of energy density in supercapacitors. The specific capacitance is notably enhanced by the metal oxides because of the reversible redox reactions. Previous studies confirmed that only a thin layer of MnO2 is involved in the redox process and is electrochemically active, which makes surface area a critical factor of energy storage. To increase surface area of MnO2, ZnO nanostructure is introduced in the electrode material as a template for electrodeposition of MnO2. In the first part of the research, we synthesize a nanomaterial which combines 0-1-2 dimensional properties of different nanostructures and significantly increases the energy capacity of MnO2. iv In the second part of the research, we demonstrate an in situ synthesis of a hybrid device that combines two materials to investigate the individual characteristic of two nanomaterials. In this study, a ZnO nanorod interface on Au nanoparticle arrays is fabricated, and results in the photo-modulation of the array characteristics. We find the use of nanoparticle arrays as electrochemical systems by electrodepositing ZnO on Au nanoparticle arrays. The method expands their potential use in sensors, multifunctional materials, single electron transistors and nanoscale energy systems. Characteristic behavior of Au nanoparticle arrays including Coulomb blockade at room temperature, single electron charging effects and a power law dependence in current-voltage were observed, and Schottky behavior and photocurrent generation due to the ZnO nanorods were also proved. From the modulation of the threshold voltage of the Au array due to the electron-hole pairs generated by photo excitation in the ZnO rods, it can be seen that the system also has coupling between the Au nanoparticles and ZnO rods other than the individual characteristics. Au nanoparticles can be used as electrochemical systems with both structural and spatial confinement of the synthesized material. The possibility of using Au nanoparticle chains as electroactive sites significantly expands their potential use in sensors, multifunctional materials, single electron transistors and nanoscale energy systems.
3

Semiclassical and path-sum Monte Carlo analysis of electron device physics

David, John Kuck 01 February 2012 (has links)
The physics of electron devices is investigated within the framework of Semiclassical Monte Carlo and Path-Sum Monte Carlo analysis. Analyses of shortchannel III-V trigate nanowire and planar graphene FETs using a Semiclassical Monte Carlo algorithm are provided. In the case of the nanowire FETs, the bandstructure and scattering effects of a survey of materials on the drain current and carrier concentration are investigated in comparison with Si FETs of the same geometry. It is shown that for short channels, the drain current is predominantly determined by associated change in carrier velocity, as opposed to changes in the carrier concentration within the channel. For the graphene FETs, we demonstrate the effects of Zener tunneling and remote charged impurities on the device performance. It is shown that, commensurate with experimental evidence, the devices have great difficulty turning off as a result of the Zener tunneling, and have a conductivity minimum which is affected by remote impurities inducing charge puddling. Each material modeled is matched with experimental data by calibrating the scattering rates with velocity-field curves. Material and geometry specific parameters, models, and methods are described, while discussion of the basic semiclassical Monte Carlo method is left to the extensive volume of publications on the subject. Finally, a novel quantum Path-Sum Monte Carlo algorithm is described and applied to a test case of two layered 6 atom rings (to mimic graphene), to demonstrate the effectiveness of the algorithm in reproducing phase transitions in collective phenomena critical to possible beyond-CMOS devices. First, the method and its implementation are detailed showing its advantages over conventional Path Integral Monte Carlo and other Quantum Monte Carlo approaches. An exact solution of the system within the framework of the algorithm is provided. A Fixed Node derivative of the Path Sum Monte Carlo method is described as a work-around of the infamous Fermion sign problem. Finally, the Fixed Node Path-Sum Monte Carlo algorithm is implemented to a set of points showing the accuracy of the method and the ability to give upper and lower bounds to the phase transition points. / text
4

Advanced physical modelling of step graded Gunn Diode for high power TeraHertz sources

Amir, Faisal January 2011 (has links)
The mm-wave frequency range is being increasingly researched to close the gap between 100 to 1000 GHz, the least explored region of the electromagnetic spectrum, often termed as the 'THz Gap'. The ever increasing demand for compact, portable and reliable THz (Terahertz) devices and the huge market potential for THz system have led to an enormous amount of research and development in the area for a number of years. The Gunn Diode is expected to play a significant role in the development of low cost solid state oscillators which will form an essential part of these THz systems.Gunn and mixer diodes will 'power' future THz systems. The THz frequencies generation methodology is based on a two-stage module. The initial frequency source is provided by a high frequency Gunn diode and is the main focus of this work. The output from this diode is then coupled into a multiplier module. The multiplier provides higher frequencies by the generation of harmonics of the input signal by means of a non-linear element, such as Schottky diode Varactor. A realistic Schottky diode model developed in SILVACOTM is presented in this work.This thesis describes the work done to develop predictive models for Gunn Diode devices using SILVACOTM. These physically-based simulations provide the opportunity to increase understanding of the effects of changes to the device's physical structure, theoretical concepts and its general operation. Thorough understanding of device physics was achieved to develop a reliable Gunn diode model. The model development included device physical structure building, material properties specification, physical models definition and using appropriate biasing conditions.The initial goal of the work was to develop a 2D model for a Gunn diode commercially manufactured by e2v Technologies Plc. for use in second harmonic mode 77GHz Intelligent Adaptive Cruise Control (ACC) systems for automobiles. This particular device was chosen as its operation is well understood and a wealth of data is available for validation of the developed physical model. The comparisons of modelled device results with measured results of a manufactured device are discussed in detail. Both the modelled and measured devices yielded similar I-V characteristics and so validated the choice of the physical models selected for the simulations. During the course of this research 2D, 3D rectangular, 3D cylindrical and cylindrical modelled device structures were developed and compared to measured results.The injector doping spike concentration was varied to study its influence on the electric field in the transit region, and was compared with published and measured data.Simulated DC characteristics were also compared with measured results for higher frequency devices. The devices mostly correspond to material previously grown for experimental studies in the development of D-band GaAs Gunn devices. Ambient temperature variations were also included in both simulated and measured data.Transient solutions were used to obtain a time dependent response such as determining the device oscillating frequency under biased condition. These solutions provided modelled device time-domain responses. The time-domain simulations of higher frequency devices which were developed used modelling measured approach are discussed. The studied devices include 77GHz (2nd harmonic), 125 GHz (2nd harmonic) and 100 GHz fundamental devices.During the course of this research, twelve research papers were disseminated. The results obtained have proved that the modelling techniques used, have provided predictive models for novel Transferred Electron Devices (TEDs) operating above 100GHz.
5

Intégration hybride de transistors à un électron sur un noeud technologique CMOS / Hybrid integration of single electron transistor on a CMOS technology node

Jouvet, Nicolas 21 November 2012 (has links)
Cette étude porte sur l’intégration hybride de transistors à un électron (single-electron transistor, SET) dans un noeud technologique CMOS. Les SETs présentent de forts potentiels, en particulier en termes d’économies d’énergies, mais ne peuvent complètement remplacer le CMOS dans les circuits électriques. Cependant, la combinaison des composants SETs et MOS permet de pallier à ce problème, ouvrant la voie à des circuits à très faible puissance dissipée, et à haute densité d’intégration. Cette thèse se propose d’employer pour la réalisation de SETs dans le back-end-of-line (BEOL), c'est-à-dire dans l’oxyde encapsulant les CMOS, le procédé de fabrication nanodamascène, mis au point par C. Dubuc. / This study deals with the hybrid integration of Single Electron Transistors (SET) on a CMOS technology node. SET devices present high potentiels, particularly in terms of energy efficiency, but can't completely replace CMOS in electrical circuits. However, SETs and CMOS devices combination can solve this issue, opening the way toward very low operating power circuits, and high integration density. This thesis proposes itself to use for Back-End-Of-Line (BEOL) SETs realization, meaning in the oxide encapsulating CMOS, the nanodamascene fabrication process devised by C. Dubuc.

Page generated in 0.0586 seconds