Spelling suggestions: "subject:"alectron activated dissociation"" "subject:"dlectron activated dissociation""
1 |
Applications of ion mobility spectrometry, collision-induced dissociation and electron activated dissociation tandem mass spectrometry to structural analysis of proteins, glycoproteins and glycansPu, Yi 09 November 2016 (has links)
This dissertation mainly focuses on analytical method development for characterization of proteins, glycoproteins and glycans using the recently developed ion mobility spectrometry (IMS) techniques and various electron activated dissociation (ExD) tandem mass spectrometry methods. IMS and ExD have become important techniques in structure analysis of biomolecules. IMS is a gas-phase separation method orthogonal to liquid chromatography (LC) fractionation. ExD is capable of producing a large number of structurally informative fragment ions for elucidation of structural details, complementary to collision-induced dissociation (CID).
We first applied the selected accumulation-trapped IMS (SA-TIMS)-electronic excitation dissociation (EED) method to analyze various mixtures of glycan isomers. Glycan linkage isomers with linear or branched structure were successfully separated and subsequently identified. Theoretical modeling was also performed to gain a better understanding of isomer separation. The calculated collisional cross section (CCS) values match well with the experimentally measured ones, and suggested that the choice of metal charge carrier and charge state is critical for successful IMS separation of isomeric glycans. In addition, a SA-TIMS-electron capture dissociation (ECD) approach was employed to study gas-phase protein conformation, as the ECD fragmentation pattern is influenced by both the charge distribution and the presence of various non-covalent interactions. We demonstrated that different conformations of protein ions in a single charge state could produce distinct fragmentation pattern, presumably because of their differences in tertiary structures and/or proton locations.
The second part describes characterization of glycoproteins using LC-hot ECD. To improve the cleavage coverage of glycopeptides, hot ECD, a fragmentation method utilizing the irradiation of high-energy electrons, was optimized for both middle-down and bottom-up analyses of glycopeptides, including peptides with multiple glycosylation sites. Hot ECD was shown to be an effective fragmentation technique for sequencing of glycopeptides, even for ions in lower charge states. In addition, the online LC-hot ECD approach was applied to characterize extensively modified glycoproteins from biological sources in which all glycosylation sites could be unambiguously determined.
This study expands the applications of IMS, CID and ExD to structural analysis of various biomolecules, and explores the analytical potential of combining them for investigation of complex biological systems, in particular, enzyme mechanisms.
|
Page generated in 0.1284 seconds