• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of Minority Atomic Ion Recombination in the Helium Afterglow

Wells, William E. 08 1900 (has links)
Electron-ion recombination has been under study for many years, but comparisons between theory and experiment have been very difficult, especially for conditions where the ion under evaluation was a minority in concentration. This study describes a direct measurement of the recombination-rate coefficient for the recombination of minority as well as majority ions in the afterglow.
2

Electron - Ion Recombination Data for Plasma Applications : Results from Electron Beam Ion Trap and Ion Storage Ring

Ali, Safdar January 2012 (has links)
This thesis contains results of electron-ion recombination processes in atomic ions relevant for plasma applications. The measurements were performed at the Stockholm Refrigerated Electron Beam Ion Trap (R-EBIT) and at the CRYRING heavy-ion storage ring. Dielectronic recombination (DR) cross sections, resonant strengths, rate coefficients and energy peak positions in H-like and He-like S are obtained for the first time from the EBIT measurements. Furthermore, the experimentally obtained DR resonant strengths are used to check the behaviour of a scaling formula for low Z, H-and He-like iso-electronic sequences and to update the fitting parameters. KLL DR peak positions for initially He- to B-like Ar ions are obtained experimentally from the EBIT measurements. Both the results from highly charged sulfur and argon are compared with the calculations performed with a distorted wave approximation. Absolute recombination rate coefficients of B-like C, B-like Ne and Be-like F ions are obtained for the first time with high energy resolution from storage ring measurements. The experimental results are compared with the intermediate coupling AUTOSTRUCTURE calculations. Plasma rate coefficients of each of these ions are obtained by convoluting the energy dependent recombination spectra with a Maxwell-Boltzmann energy distribution in the temperature range of 103-106 K. The resulting plasma rate coefficients are presented and compared with the calculated data available in literature. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Accepted. Paper 5: Accepted. Paper 6: Manuscript. Paper 7: Manuscript.</p>
3

Elementární procesy p̌ri nízkých teplotách - reakce iont ̊u H3+ a N2H+ v dohasínajícím plazmatu / Elementary Processes at Low Temperatures - Reactions of H3+ and N2H+ in Afterglow Plasmas

Kálosi, Ábel January 2019 (has links)
Electron-ion recombination and ion-neutral interactions play a piv- otal role in the chemical evolution of molecules in the Interstellar Medium (ISM). Physical conditions under which these processes un- dergo in the ISM include a wide range of temperatures and particle number densities. This work contributes to the experimental study of named low temperature phenomena in the range of 30 K to 300 K focusing on the reactions of hydrogen-containing light molecules. The employed experimental techniques are based on a combination of a Stationary Afterglow (SA) instrument with a Continuous Wave Cavity Ring-down Spectrometer (cw-CRDS). The main contributions of this work can be split into three topics. (1) The proton and deuteron con- taining isotopic system of H3 + ions. The isotopic fractionation process in collisions with hydrogen and deuterium gas was investigated in low temperature discharges, nominal ion temperatures of 80 K to 140 K, to deduce relative ion densities in the experiments. These are necessary for afterglow studies of isotopic effects in electron-ion recombination of the studied ions. (2) Vibrational spectroscopy of N2H+ ions focusing on first overtone (2ν1 band) transitions and ion thermometry, the first step towards studies of electron-ion recombination. (3) The role of para/ortho spin...
4

Autoionizing states and their relevance in electron-ion recombination / Autojonizujuća stanja i njihov značaj u rekombinaciji jona sa elektronima

Nikolić, Dragan January 2004 (has links)
<p>Atomic physics plays an important role in determining the evolution stages in a wide range of laboratory and cosmic plasmas. Therefore, the main contribution to our ability to model, infer and control plasma sources is the knowledge of underlying atomic processes. Of particular importance are reliable low temperature dielectronic recombination (DR) rate coefficients.</p><p>This thesis provides systematically calculated DR rate coefficients of lithium-like beryllium and sodium ions via ∆n = 0 doubly excited resonant states. The calculations are based on complex-scaled relativistic many-body perturbation theory in an all-order formulation within the single- and double-excitation coupled-cluster scheme, including radiative corrections.</p><p>Comparison of DR resonance parameters (energy levels, autoionization widths, radiative transition probabilities and strengths) between our theoretical predictions and the heavy-ion storage rings experiments (CRYRING-Stockholm and TSRHeidelberg) shows good agreement.</p><p>The intruder state problem is a principal obstacle for general application of the coupled-cluster formalism on doubly excited states. Thus, we have developed a technique designed to avoid the intruder state problem. It is based on a convenient partitioning of the Hilbert space and reformulation of the conventional set of pairequations. The general aspects of this development are discussed, and the effectiveness of its numerical implementation (within the non-relativistic framework) is selectively illustrated on autoionizing doubly excited states of helium.</p>
5

Autoionizing states and their relevance in electron-ion recombination / Autojonizujuća stanja i njihov značaj u rekombinaciji jona sa elektronima

Nikolić, Dragan January 2004 (has links)
Atomic physics plays an important role in determining the evolution stages in a wide range of laboratory and cosmic plasmas. Therefore, the main contribution to our ability to model, infer and control plasma sources is the knowledge of underlying atomic processes. Of particular importance are reliable low temperature dielectronic recombination (DR) rate coefficients. This thesis provides systematically calculated DR rate coefficients of lithium-like beryllium and sodium ions via ∆n = 0 doubly excited resonant states. The calculations are based on complex-scaled relativistic many-body perturbation theory in an all-order formulation within the single- and double-excitation coupled-cluster scheme, including radiative corrections. Comparison of DR resonance parameters (energy levels, autoionization widths, radiative transition probabilities and strengths) between our theoretical predictions and the heavy-ion storage rings experiments (CRYRING-Stockholm and TSRHeidelberg) shows good agreement. The intruder state problem is a principal obstacle for general application of the coupled-cluster formalism on doubly excited states. Thus, we have developed a technique designed to avoid the intruder state problem. It is based on a convenient partitioning of the Hilbert space and reformulation of the conventional set of pairequations. The general aspects of this development are discussed, and the effectiveness of its numerical implementation (within the non-relativistic framework) is selectively illustrated on autoionizing doubly excited states of helium.

Page generated in 0.1155 seconds