• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of Heat Sinks with Flow Bypass Using Entropy Generation Minimization

Hossain, Md Rakib January 2006 (has links)
Forced air cooling of electronic packages is enhanced through the use of extended surfaces or heat sinks that reduce boundary resistance allowing heat generating devices to operate at lower temperatures, thereby improving reliability. Unfortunately, the clearance zones or bypass regions surrounding the heat sink, channel some of the cooling air mass away from the heat sink, making it difficult to accurately estimate thermal performance. The design of an "optimized" heat sink requires a complete knowledge of all thermal resistances between the heat source and the ambient air, therefore, it is imperative that the boundary resistance is properly characterized, since it is typically the controlling resistance in the path. Existing models are difficult to incorporate into optimization routines because they do not provide a means of predicting flow bypass based on information at hand, such as heat sink geometry or approach velocity. <br /><br /> A procedure is presented that allows the simultaneous optimization of heat sink design parameters based on a minimization of the entropy generation associated with thermal resistance and fluid pressure drop. All relevant design parameters such as geometric parameters of a heat sink, source and bypass configurations, heat dissipation, material properties and flow conditions can be simultaneously optimized to characterize a heat sink that minimizes entropy generation and in turn results in a minimum operating temperature of an electronic component. <br /><br /> An analytical model for predicting air flow and pressure drop across the heat sink is developed by applying conservation of mass and momentum over the bypass regions and in the flow channels established between the fins of the heat sink. The model is applicable for the entire laminar flow range and any type of bypass (side, top or side and top both) or fully shrouded configurations. During the development of the model, the flow was assumed to be steady, laminar, developing flow. The model is also correlated to a simple equation within 8% confidence level for an easy implementation into the entropy generation minimization procedure. The influence of all the resistances to heat transfer associated with a heat sink are studied, and an order of magnitude analysis is carried out to include only the influential resistances in the thermal resistance model. Spreading and material resistances due to the geometry of the base plate, conduction and convection resistances associated with the fins of the heat sink and convection resistance of the wetted surfaces of the base plate are considered for the development of a thermal resistance model. The thermal resistance and pressure drop model are shown to be in good agreement with the experimental data over a wide range of flow conditions, heat sink geometries, bypass configurations and power levels, typical of many applications found in microelectronics and related fields. Data published in the open literature are also used to show the flexibility of the models to simulate a variety of applications. <br /><br /> The proposed thermal resistance and pressure drop model are successfully used in the entropy generation minimization procedure to design a heat sink with bypass for optimum dimensions and performance. A sensitivity analysis is also carried out to check the influence of bypass configurations, power levels, heat sink materials and the coverage ratio on the optimum dimensions and performance of a heat sink and it is found that any change in these parameters results in a change in the optimized heat sink dimensions and flow conditions associated with the application for optimal heat sink performance.
2

Optimization of Heat Sinks with Flow Bypass Using Entropy Generation Minimization

Hossain, Md Rakib January 2006 (has links)
Forced air cooling of electronic packages is enhanced through the use of extended surfaces or heat sinks that reduce boundary resistance allowing heat generating devices to operate at lower temperatures, thereby improving reliability. Unfortunately, the clearance zones or bypass regions surrounding the heat sink, channel some of the cooling air mass away from the heat sink, making it difficult to accurately estimate thermal performance. The design of an "optimized" heat sink requires a complete knowledge of all thermal resistances between the heat source and the ambient air, therefore, it is imperative that the boundary resistance is properly characterized, since it is typically the controlling resistance in the path. Existing models are difficult to incorporate into optimization routines because they do not provide a means of predicting flow bypass based on information at hand, such as heat sink geometry or approach velocity. <br /><br /> A procedure is presented that allows the simultaneous optimization of heat sink design parameters based on a minimization of the entropy generation associated with thermal resistance and fluid pressure drop. All relevant design parameters such as geometric parameters of a heat sink, source and bypass configurations, heat dissipation, material properties and flow conditions can be simultaneously optimized to characterize a heat sink that minimizes entropy generation and in turn results in a minimum operating temperature of an electronic component. <br /><br /> An analytical model for predicting air flow and pressure drop across the heat sink is developed by applying conservation of mass and momentum over the bypass regions and in the flow channels established between the fins of the heat sink. The model is applicable for the entire laminar flow range and any type of bypass (side, top or side and top both) or fully shrouded configurations. During the development of the model, the flow was assumed to be steady, laminar, developing flow. The model is also correlated to a simple equation within 8% confidence level for an easy implementation into the entropy generation minimization procedure. The influence of all the resistances to heat transfer associated with a heat sink are studied, and an order of magnitude analysis is carried out to include only the influential resistances in the thermal resistance model. Spreading and material resistances due to the geometry of the base plate, conduction and convection resistances associated with the fins of the heat sink and convection resistance of the wetted surfaces of the base plate are considered for the development of a thermal resistance model. The thermal resistance and pressure drop model are shown to be in good agreement with the experimental data over a wide range of flow conditions, heat sink geometries, bypass configurations and power levels, typical of many applications found in microelectronics and related fields. Data published in the open literature are also used to show the flexibility of the models to simulate a variety of applications. <br /><br /> The proposed thermal resistance and pressure drop model are successfully used in the entropy generation minimization procedure to design a heat sink with bypass for optimum dimensions and performance. A sensitivity analysis is also carried out to check the influence of bypass configurations, power levels, heat sink materials and the coverage ratio on the optimum dimensions and performance of a heat sink and it is found that any change in these parameters results in a change in the optimized heat sink dimensions and flow conditions associated with the application for optimal heat sink performance.
3

Structural optimization of electronic packages using DOE / Strukturoptimering av elektronik med DOE

Johansson, Robin January 2020 (has links)
The reliability of a mechanical system containing electronic packages is highly affectedby the environment the system is stationed in. The difference and fluctuationsbetween the ambient temperature and the operating temperature of the electronicpackage cause accumulation of inelastic strains in the package components thusdecreasing the service life. The most common failure modes of an electronic packagehas been identified from inspection of malfunctioning machines as cracks in the solderjoint and delamination between the glue and the die. Knowledge regarding therelationships between parameters affecting these failure modes, which are importantand which are not, is of high interest when developing new and existing products. SAAB AB would like to develop a methodology using design exploration to allow forevaluation of electronic packages using nonlinear finite element methods. A surrogate model was created and parameterized with HyperMorph to be used forthree linear static variations of design of experiments, where both the performance ofthe methods themselves and the relative importance of the parameters were ofinterest. A connectivity condition was also implemented to allow for relativemovement between components while keeping the mesh intact. The designexploration was executed using a Taguchi design, a Modified extensive latticesequence design and a fractional factorial design where the three methods werecompared as well as the parameter significance analysed. An optimization was thenperformed to find the optimal parameter settings within the allowed bounds to beused where a nominal model and an optimized model are evaluated with animplemented creep law. The fatigue life of the two models were then estimated. / Tillförlitligheten hos ett mekaniskt system med elektroniska kretsar påverkas starkt av miljön systemet används i. Skillnader och fluktuationer mellan omgivningens temperatur och arbetstemperaturen för de elektroniska kretsarna orsakar ackumulering av inelastiska töjningar, därmed förkortas det mekaniska systemets livstid. Dem vanligaste fel-moderna för en elektronisk krets har identifierats genom inspektion av felande maskiner som sprickbildning i lödfogarna och delaminering mellan processorn och dess lim. Kunskap hur förhållandet mellan parametrar som påverkar dessa fel-moder, vilka som är viktiga och vilka som inte är viktiga är av högt intresse vid utveckling av nya och redan existerande produkter. SAAB AB vill utveckla en metodik som utnyttjar statistisk försöksplanering för analyserande av elektroniska kretsar med hjälp av olinjära finita element metoder för att kunna spegla dess beteende på ett realistiskt sätt. En surrogatmodell skapades och parametriserades med hjälp av HyperMorph för att användas inom tre statiskt linjära varianter av statistisk försöksplanering, där både metodens prestanda och den relativa påverkan från parametrarna var av intresse. Ett kontaktvillkor implementerades för att tillåta relativ rörelse mellan komponenter samtidigt som nätet av finita element hölls intakt. Försöksplaneringsimuleringar utfördes med en Taguchi design, en Modified extensive lattice sequence design och en fractional factorial design, där de tre metoderna jämfördes mot varandra samt analyserades vad gäller respektive parametersignifikansen. Med optimering fanns sedan en optimal modell för att kunna jämföras med en nominell modell där en kryplag implementerades i lödfogen. Livslängden beräknades sedan för båda modeller.
4

Investigation and Prediction of Solder Joint Reliability for Ceramic Area Array Packages under Thermal Cycling, Power Cycling, and Vibration Environments

Perkins, Andrew Eugene 05 April 2007 (has links)
Microelectronic systems are subjected to thermal cycling, power cycling, and vibration environments in various applications. These environments, whether applied sequentially or simultaneously, affect the solder joint reliability. Literature is scarce on predicting solder joint fatigue failure under such multiple loading environments. This thesis aims to develop a unified modeling methodology to study the reliability of electronic packages subjected to thermal cycling, power cycling, and vibration loading conditions. Such a modeling methodology is comprised of an enriched material model to accommodate time-, temperature-, and direction-dependent behavior of various materials in the assembly, and at the same time, will have a geometry model that can accommodate thermal- and power-cycling induced low-cycle fatigue damage mechanism as well as vibration-induced high-cycle fatigue damage mechanism. The developed modeling methodology is applied to study the reliability characteristics of ceramic area array electronic packages with lead-based solder interconnections. In particular, this thesis aims to study the reliability of such solder interconnections under thermal, power, and vibration conditions individually, and validate the model against these conditions using appropriate experimental data either from in-house experiments or existing literature. Once validated, this thesis also aims to perform a design of simulations study to understand the effect of various materials, geometry, and thermal parameters on solder joint reliability of ceramic ball grid array and ceramic column grid array packages, and use such a study to develop universal polynomial predictive equations for solder joint reliability. The thesis also aims to employ the unified modeling methodology to develop new understanding of the acceleration factor relationship between power cycling and thermal cycling. Finally, this thesis plans to use the unified modeling methodology to study solder joint reliability under the sequential application of thermal cycling and vibration loading conditions, and to validate the modeling results with first-of-its-kind experimental data. A nonlinear cumulative damage law is developed to account for the nonlinearity and effect of sequence loading under thermal cycling, power cycling, and vibration loading.
5

Creep Fatigue Interaction in Solder Joint Alloys of Electronic Packages / Interaction fatigue-fluage dans les alliages de joint brasé de boitiers électroniques

Zanella, Stéphane 13 December 2018 (has links)
L’analyse de la durée de vie des joints brasés est un challenge pour les industries du spatiale, de l’aéronautique et de la défense qui ont besoin d’équipements très fiables pour des environnements sévères et de longues durées de vie. L’évolution des technologies de boitier électronique, principalement conduite par les marchés civils, introduit de nouvelles architectures et de nouveaux matériaux dont la fiabilité doit être étudiée pour les exigences de ces marchés critiques. Un des éléments critiques d’une carte électronique est l’interconnexion effectué par le joint brasé. Dans ce contexte, les connaissances des propriétés de fatigue des matériaux utilisés pour le joint brasé sont nécessaires pour développer des cartes électroniques, définir les essais accélérés de qualification ou pour réaliser des simulations de durée de vie.Les lois utilisées communément dans l’industrie sont généralement des critères simplifiés comme les lois de Coffin-Manson, basée sur la déformation inélastique, ou Morrow, basée sur l’énergie dissipée. Les déformations plastique et visqueuse sont dans ces lois indissociées et appelées déformation inélastique, supposant que les contributions au dommage des déformations plastique et visqueuse sont similaires. Cependant, la pertinence de ces lois dans le cas du matériau joint brasé et les profils de mission des marchés critiques doit être étudiée. En effet, le joint brasé possède une température de fusion faible qui entraine un comportement visqueux même à température ambiante. Celle-ci est nécessaire à l’étape d’assemblage des boitiers. Ainsi, d’importantes déformations visqueuses sont développées notamment pour les environnements sévères et les longues phases de maintien de ces marchés critiques. Dans ce contexte, il est important de prendre en compte l’interaction fatigue-fluage dans les matériaux joint brasé pour atteindre les exigences de ces applications.Les limitations de la littérature sont le manque de données expérimentales précises dissociant les déformations plastique et visqueuse en essai de fatigue. La représentativité des éprouvettes massiques par rapport à l’application finales est en effet discutable au vue de la microstructure très spécifique du joint brasé. De plus, il n’existe pas de consensus réel sur les modèles matériaux à utiliser. Dans ce contexte, un banc de mesure a été développé dans le but de réaliser des essais de fatigue en cisaillement sur des boitiers électroniques assemblés.Le temps de maintien, la température et la force appliquée ont un impact sur le nombre de cycles à défaillance. La combinaison d’une augmentation de la température avec l’ajout du temps de maintien réduit jusqu’à un facteur dix le nombre de cycles à rupture. Les courbes d’hystérésis du boitier ont été converties en contrainte et déformations plastique et visqueuse dans le joint brasé dans le but de calibrer un modèle matériau et une loi de fatigue. Les résultats montrent que l’intérêt des lois de fatigue utilisées communément est limité. Des résultats utilisant différents dispositifs expérimentaux de la littérature ont été ajoutés pour compléter ceux trouvés. Une loi de fatigue modifiée en fréquence a été testée et montre de meilleures prédictions dans le cas d’essais réalisés à différentes fréquences car elle permet de prendre des effets liés au temps comme la viscosité. Cependant, des limites avec cette loi ont été trouvées dans le cas de sollicitation avec temps de maintien. Une loi de fatigue prenant en compte l’interaction fatigue fluage a ensuite été proposée avec de bonnes prédictions notamment pour des températures plus élevées. L’évolution de la microstructure a montré que le dommage détruit la structure dendritique du joint et la remplace par des joints de tailles plus petites dans la zone proche de la fissure. La coalescence d’éléments a également été observée. Cependant, plus d’investigations sont nécessaires pour définir les marqueurs spécifiques des dommages plastique et visqueux. / Solder joints reliability analysis represents a challenge for the aerospace and defense industries, which are in need of trustworthy equipment with a long lifetime in harsh environments. The evolution of electronic packages, driven by consumer civil applications, introduces new architectures and materials for which reliability needs to be qualified for the constraints of the aerospace and defense applications. One of the most critical elements of an electronic assembly is the solder joint interconnection. In this context, the knowledge of fatigue properties of solder material is required to design the assemblies, to define accelerated tests or to perform lifetime simulations.Fatigue laws used commonly in the industry are generally simplified criteria such as Coffin-Manson relation, based on inelastic deformation, or Morrow relation, based on dissipated energy per cycle. Cyclic creep and plastic strains are mingled and formulated as a unique inelastic strain in these relationships. The underlying assumption is that damage contributions of creep and plasticity phenomena are equivalent. The relevance of these laws in the case of solder joint and the mission profiles of aerospace and defense industries can be discussed. In fact, solder joint materials have low melting temperatures which are required by the assembly manufacturing process, inducing viscous strains even at room temperature. In this context, important viscous strains are developed due to the harsh environment with high temperatures and the long maintain phases of space, defense and avionics industries. Creep-fatigue interaction must be taken into account for solder joint material in order to address these applications requirements.Limitations of the literature are the lack of clear experimental data separating plastic and creep strains during fatigue tests. Representativeness of experimental tests based on bulk samples can be discussed because of the complex microstructure of solder joints. No consensus exists on the mechanical model and the parameters. In this context, an innovative test bench has been developed to perform shear fatigue tests with assembled electronic packages in order to study creep-fatigue interaction in solder joints.Dwell time, temperature and force have an impact on the number of cycles to failure. Combined increase of temperature and dwell time reduces the number of cycles to failure until a factor of 10. The hysteresis response of the package is converted in stress and plastic and viscous strains in order to calibrate a viscoplastic model and a fatigue law. Results show limitations of classic Coffin-Manson fatigue law. Experimental results from the literature have been used to complete our test plan. A frequency modified fatigue model shows increased prediction accuracy for fatigue tests performed at different frequencies. In fact, time-dependent viscous damage is included in the law by the frequency factor. However, limitations of this law have been found in particular for long dwell time configuration. A creep-fatigue model is proposed to dissociate damages from plastic and viscous strains. This fatigue law increases prediction accuracy in the case of high temperature and long dwell time configuration. Microstructure evolutions indicate the destruction of the dendritic structure and replaced by small grains recrystallization in the area close to the fracture. Coalescence of different precipitates is also observed in the damaged area. More investigations on this topic are required in order to evaluate the specific markers of plastic and viscous damages.

Page generated in 0.0535 seconds