• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Title Geometry and Electronic Structure of Doped Clusters via the Coalescence Kick Method

Averkiev, Boris 01 December 2009 (has links)
Developing chemical bonding models in clusters is one of the most challenging tasks of modern theoretical chemistry. There are two reasons for this. The first one is that clusters are relatively new objects in chemistry and have been extensively studied since the middle of the 20th century. The second reason is that clusters require high-level quantum-chemical calculations; while for many classical molecules their geometry and properties can be reasonably predicted by simpler methods. The aim of this dissertation was to study doped clusters and explain their chemical bonding. The research was focused on three classes of compounds: aluminum clusters doped with one nitrogen atom, planar compounds with hypercoordinate central atom, partially mixed carbon-boron clusters, and transition metal clusters. The geometry of the two latter classes of compounds was explained using the concept of aromaticity, previously developed in our group.
2

Lead free solders for aerospace applications

Farinha Marques, Vitor Manuel January 2010 (has links)
The factors controlling the reliability of Pb-free solders when subject to thermomechanical regimes relevant to the harsh aerospace environment have been studied. Ball grid array (BGAs) typical of microelectronic devices have been manufactured in-house and subjected to isothermal ageing and thermal cycling. The BGAs comprised both Cu and Ni-Au metallizations, Pb-free Sn-Ag-Cu 400 and 600&mu;m solder balls, FR4 and Al<sub>2</sub>O<sub>3</sub> boards, and included circuits to measure resistance changes due to damage in the joints during thermal cycling. Microstructural evolution within the solders balls and complex interfacial reactions were studied in all configurations using various types of electron microscopy. The mechanical properties of the different phases formed within solder joints were studied using nanoindentation at room and elevated temperatures up to 175°C for the first time. Intermetallic compounds (IMCs) were stiff, hard and brittle with very low creep rates, while the softer primary Sn, eutectic regions and Cu metallization readily underwent creep. Two-dimensional finite element analysis (FEA) of nanoindentation was used to understand better the physical meaning of nanoindentation creep data. Reliability experiments comprised both thermal cycling and FEA of BGAs. The difference in coefficient of thermal expansion (CTE) in the BGA materials caused interfacial fatigue damage in the solder joints, which was detected primarily at the solder/metallization interface of the outermost, most strained solder joint. Accumulated creep strain per cycle at this interface was evaluated using 3D FEA of the stress-strain state of the BGA and results calibrated against experimental BGA mean lifetimes using the Coffin-Mason relationship. Nanoindentation combined with FEA has been shown to be a viable route for the rapid assessment of creep performance and lifetime in lead-free solders under aerospace thermal cycles.

Page generated in 0.0748 seconds