• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A novel amplifier system combining class D D/A conversion and low-power class AB operation /

Peruzzi, Robert O., January 2004 (has links)
Thesis (Ph. D.)--Lehigh University, 2005. / Includes vita. Includes bibliographical references (leaves 134-136).
2

Sustainable power management of microelectronics /

Muhtaroglu, Ali. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2008. / Printout. Includes bibliographical references. Also available on the World Wide Web.
3

Characterizing dynamic power and data rate policies for WirelessUSB networks /

Barlow, Jeffrey L., January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Computer Science, 2006. / Includes bibliographical references (p. 127-129).
4

Inverter five levels based on switching cell multi-state type T / Inversor de cinco nÃveis baseado na cÃlula de comutaÃÃo de mÃltiplos estados tipo T

Ronny Glauber de Almeida Cacau 30 January 2014 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Este trabalho apresenta o estudo, projeto e implementaÃÃo de um inversor multinÃvel monofÃsico baseado na cÃlula de comutaÃÃo de mÃltiplos estados tipo T (5L-CCME-T2) para aplicaÃÃes em baixa tensÃo e elevadas correntes. A topologia proposta visa estender a aplicaÃÃo da cÃlula de comutaÃÃo de mÃltiplos estados (CCME) para a estrutura do conversor de trÃs nÃveis tipo T, proporcionando cinco nÃveis na tensÃo de saÃda antes do filtro e, consequentemente, uma reduÃÃo do conteÃdo harmÃnico e maior qualidade da tensÃo de saÃda. Outra caracterÃstica desta topologia à a distribuiÃÃo uniforme da corrente total de saÃda entre os semicondutores do conversor, proporcionando menores perdas por conduÃÃo e elevado rendimento. AlÃm disso, à possÃvel reduzir o peso e volume dos magnÃticos, uma vez que a frequÃncia de operaÃÃo dos elementos reativos à o dobro da frequÃncia de comutaÃÃo dos interruptores. Um estudo teÃrico com anÃlise qualitativa e quantitativa do inversor proposto e metodologia de projeto foi realizado. A estratÃgia de controle implementada tem como objetivo o controle da tensÃo de saÃda e das tensÃes do barramento CC. A tÃcnica de modulaÃÃo empregada à a convencional modulaÃÃo por largura de pulso senoidal (SPWM). A validaÃÃo da topologia à realizada atravÃs dos resultados de simulaÃÃo e experimentais de um protÃtipo desenvolvido para uma potÃncia de saÃda de 5 kW. / This work presents the study, design and implementation of a multilevel converter based on T - type multi - state switching cell (5L - MSSC - T 2 ) for applications in low voltages and high currents. The proposed topology aims to extend the application of the multi - state switching cell (MSSC) to the structure of the three - level T - type converter, providing five levels in the output voltage before the filter and, consequently, a reduction of the harmonic content and higher output vol tage quality. Another feature of this topology is the uniform distribution of the total output current between the semiconductors of the converter, providing lower conduction losses and high efficiency. Furthermore , it is possible to reduce the weight and volume of magnetics, since the operating frequency of reactive elements is twice the switching frequency of the switches. A theoretical study with qualitative and quantitative analysis of the proposed inverter and the design methodology was performed . The control strategy implemented aims to control the output voltage and the DC bus voltages. The employed modulation technique is the conventional sinusoidal pulse width modulation (SPWM) . The validation of the topology is verified through simulation and exper imental results of a developed prototype for an output power of 5 kW
5

A modular compact kW-class IPOS DC-DC converter for pulsed power applications

Thames, Walker Joseph 10 May 2024 (has links) (PDF)
Pulsed power systems are concerned with the delivery of significant amounts of power in a greatly condensed time frame. To achieve this, energy is often stored in a capacitor, where it can be rapidly discharged. Certain applications require repeated charging and discharging of the load capacitor in a specifically modulated manner; special power electronics systems must be developed for these situations. Existing systems on the market sacrifice a small form factor for greater pulsed power output. The proposed design outlines the development of a compact pulsed power capacitor charger capable of charging a load capacitor to high voltages at a pulse repetition frequency of 30 kHz. Due to the compact form factor, the charger features a unique design of four full-bridge converters modularly connected in Input-Parallel Output-Series configuration. Experimental verification shows that the system exceeds expectations and can be utilized and adapted to fit many pulsed power applications.
6

Vector Based Control for Power Electronics Dominated AC Power Grid

Ashraf, Haris Bin 14 February 2025 (has links)
The global trend towards electrifying the grid has positioned power electronics at the forefront of modern power systems. To control power electronics in grid-connected applications, Grid Forming (GFM) control has become a focal point of research. GFM control utilizes control laws derived from steady-state relationships in the phasor domain. Although these control methods have historically performed well in traditional power systems dominated by electrical machines, they exhibit unexpected control issues in power electronics-dominant power systems. The root of these unexpected behaviors lies in the foundational assumptions of these control methods (Droop control and Virtual Synchronous Machine) i.e. frequency is considered to be a steady state quantity which is constant within the fundamental line cycle. This thesis critically examines these assumptions and elucidates their potential inapplicability in power electronics-dominated power systems. This thesis also introduces vectors as an alternative representation of voltages and currents. Unlike phasors, vectors are instantaneous and time-varying representation of electrical quantities at any point in time, defined by three time-varying values: Magnitude, Polar angle, and Azimuthal angle, using the spherical coordinate system. An initial attempt to demonstrate the capability of using these vectors to control the active and reactive power in inverters connected to the grid has also been presented in this thesis. The proposed vector-based control is able to track the commanded power setpoints within a fraction of the fundamental AC voltage cycle. / Master of Science / As the world moves towards cleaner, greener energy, power electronics have become a key technology in modern electrical grids. One of the main ways to control power converters in grid- connected systems is through a method called Grid Forming (GFM) control. GFM control has been effective in traditional grids with large rotating machines, but it faces unexpected problems in grids that rely more on power electronics. This is because the basic assumptions of GFM control, such as treating frequency as a steady value, do not always hold true in power electronics-driven systems. This thesis explores these issues and proposes a new approach to improve control. Instead of using traditional methods based on steady-state values, it introduces the idea of using vectors to represent electrical quantities like voltage and current. Unlike traditional methods, vectors can describe electrical signals at any moment in time. The thesis demonstrates how this vector-based approach can be used to control important parameters of power converters in the grid, like active and reactive power, in a way that responds quickly and accurately to changes and disturbances. This new method could help make power systems more reliable and efficient as they evolve to incorporate more power electronics.
7

Power Cycling with Switching Losses

Seidel, Peter 10 March 2021 (has links)
This paper deals with a method to additionally heat with switching losses in a classical power cycling test, as it is often used for power semiconductors.The fundamentals of testing, switching behavior, thermal and electrical characteristics of semiconductors are covered.The core of the work is the construction, start-up and solution of technical problems during the testing of the test stand. Another aspects are the measurement and software challenges in generating the pulse pattern and in evaluating the results. The last part of the work deals with the testing of different types of semiconductors, such as IGBTs and MOSFETs, which were also made of different materials, such as silicon and silicon carbide, and had different voltage classes.:Contents i Symbols and Abbreviations iii Introduction 1 1. Power Cycling Lifetime 2 1.1. Power Cycling-induced Ageing Mechanisms and Test Methods 2 1.1.1. Overview of Packaging Technologies and their Wear-out Failures 2 1.1.2. Failure Mechanisms in Power Modules and Discrete Devices 6 1.1.3. Basic Structure of a Test Bench for DC Power Cycling Tests 8 1.1.4. Modifications for SiC MOSFET Operation 12 1.1.5. Measurement Accuracy, Limits and Consequences for Test Evaluation 16 1.1.6. Thermal Resistance and Thermal Impedance Spectroscopy 18 1.2. Empirical Power Cycling Lifetime Models 21 2. Specific Limitations in Conditions for some Devices 27 3. Approaches of an Application-close Power Cycling Test 30 4. New Test Bench Concept with an adjustable part of switching losses 35 4.1. Basics for Switching 35 4.1.1. Active Clamping 38 4.1.2. Boosted Active Clamping 40 4.2. Repetitive Unclamped Inductive Switching 42 4.3. Test Bench Concept for Power Cycling Test with Turn-off Losses 44 4.4. Dimensioning of the Stray Inductance 47 4.4.1. Current Ripple and Attainable Switching Losses 51 4.5. Special Setup for Si and SiC MOSFETs 57 4.6. Measurement Algorithm and necessary Hardware 58 4.6.1. Measurement Hardware 58 4.6.2. Measurement Algorithm 60 4.6.3. Challenges during the Measurement 62 4.6.4. Current Source for Fast Regulation 66 5. Test Results with IGBTs 69 5.1. Modules with Baseplate 69 5.2. Modules without Baseplate 80 5.3. IGBTs in Discrete Housings 90 6. Test Results with MOSFETs 97 6.1. Low Voltage Si MOSFETs 97 6.2. SiC MOSFETs 106 7. Analysis of Si Low-voltage MOSFETs Results with FEM 107 8. Conclusion and Outlook 113 9. Acknowledgement 118 References 119 Appendix 136
8

Návrh komplexního HIL simulátoru pátých dveří automobilu / Design of a complex HIL simulator of car boot door

Obrtáč, Tomáš January 2019 (has links)
This thesis covers the development of complex HIL simulator for the fifth car door. The beginning of the thesis is dedicated to theoretical research in the area of In-the-Loop testing. Practical part describes development of HIL simulator complemented by power electronics part. A simulation environment Matlab/Simulink was used for control design and analysis. Before the beginning of the work was measured signal part of control unit and specific signal sequences were identified. The control was applied on sbRIO device from National Instruments company with the implementation of a model on FPGA. Specific requirements for sensing speed and generation of communication signals lead to creation of unique hardware for application needs. The result of the thesis is complex HIL simulator with intuitive GUI and possibility of simulations a wide range of DC motors.
9

Estudo e aplicação de filtros ativos paralelos para sistemas trifasicos com quatro fios / Development and application of shunt active filters for three-phase four-wire systems

Villalva, Marcelo Gradella, 1978- 03 October 2005 (has links)
Orientador: Ernesto Ruppert Filho / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-04T17:39:56Z (GMT). No. of bitstreams: 1 Villalva_MarceloGradella_M.pdf: 5074196 bytes, checksum: 39f4e09d9f1f624c909a5ee7f2d3fa4d (MD5) Previous issue date: 2005 / Resumo: o tema da qualidade de energia elétrica adquiriu grande importância em anos recentes. O número crescente de cargas baseadas em conversores eletrônicos criou a preocupação com a distorção harmônica em sistemas de energia elétrica. Qualidade de energia é um assunto importante tanto para as companhias distribuidoras e geradoras de energia elétrica como para os consumidores. A poluição harmônica pode causar sérios problemas às companhias e aos consumidores. Alguns dos possíveis problemas são a instabilidade na operação do sistema, distorções de tensão, perdas de energia, interferência eletromagnética e ressonâncias perigosas. A utilização de equipamentos para eliminação de harmônicos tornou-se necessária e são versas as soluções possíveis. Tradicionalmente se utilizam Itros passivos do tipo série ou paralelo. Esses Itros resentam como desvantagem suas grandes dimensões, seu custo elevado, elevadas perdas de energia, pouca e cácia, dependendência da interação com parâmetros do sistema e risco de introdução de novas freqüências de ressonância. O desenvolvimento recente da eletrônica de potência e do processamento digital de sinais tornou possível a utilização de Itros ativos de potência, que são condicionadores eletrônicos de energia. Filtros ativos de potência podem ser utilizados para realizar a Itragem de harmônicos em sistemas elétricos, sem os problemas apresentados pelos dispositivos passivos. Filtros ativos série são utilizados para eliminar distorções de tensão e Itros ativos paralelos são usados para eliminar correntes harmônicas originadas por carga não lineares. Esses últimos podem ainda ser usados para corrigir o fator de potência e para equilibrar as correntes de linha em sistemas desbalanceados com quatro os. Este trabalho estuda a aplicação de Itros ativos paralelos a sistemas trifásicos com quatro os. São estudados teorias de potências, métodos de compensação de harmônicos e sistemas de controle. A principal contribuição do trabalho está no emprego de um método seletivo de compensação de correntes baseado em redes neurais adaptativas, além do estudo do emprego de redes neurais no controle de correntes. Esses e outros assuntos foram experimentalmente comprovados com um protótipo de Itro ativo construí do em laboratório / Abstract: Electricity power quality has gained increased importance in the past few years. The growing number of power electronicsbased loads has created a preoccupation about harrnonic distortion in electric systems. Electricity power quality is an important issue both for energy utilities and consumers. Harrnonic poIlution may cause severe problems to electricity utilities and consumer networks such as system instability, voltage distortions, power losses, electromagnetic interference and harrnful resonances. The use ofharrnonic ltering equipment has become necessary and many solutions have been studied. Traditional passive devices such as tuned shunt lters and series reactors present disadvantages such as bulky sizes, high costs, increased losses, smaIl effectiveness, dependence on the parameters of the electric system and yet more risk of resonance with other elements of the network. Recent deve10pments in the major of power electronics and digital processing have made possible the pplication of electronic power conditioners such as series and shunt active lters. Active power lters may be used to overcome the drawbacks of passive devices. Series active power lters are used to reduce voltage distortions of electric systems. Shunt active power lters are used to mitigate harrnonic currents originated by nonlinear loads. The latter may be also used for increasing power factor and for balancing line currents in four-wire systems with unbalanced loads. This work is concerned with the application of shunt active power lters to three-phase four-wire electric systems. Power theories, compensation methods and control systems are discussed. The application of a se1ective compensation method based on adaptive neural networks and the employment of a neural network in the current controlIer are the main contributions of this work. These and other subjects were experimentalIy tested with a prototype of an active. power lter built in laboratory / Mestrado / Energia Eletrica / Mestre em Engenharia Elétrica
10

Onduleurs de tension pour actionneurs électriques : fiabilisation par la séparation des cellules de commutation et reconfiguration / Voltage inverter for electrical actuators : processes of reliability by disjunction of commutaion's cells and reorganization

Ondo Ndong, Bienvenue 15 October 2010 (has links)
Ce mémoire de thèse s'inscrit dans le cadre du programme « avion plus électrique », il comprend deux parties.La première est consacrée à la présentation détaillée du contexte, c'est-à-dire du processus qui conduit à électrifier la plupart des systèmes présents dans l'avion, un exemple d'actionneur électromécanique spécifique, conçu dans ce cadre sera aussi détaillé notamment pour ce qui concerne son mode d'alimentation. La seconde partie, plus longue, est consacrée à différents processus de fiabilisation de structures d'électroniques de puissance. Du fait de l'électrification croissante de l'avion, ces structures vont se multiplier à bord, mais la fiabilité connue de ces dispositifs n'est pas apte à satisfaire aux exigences de l'aéronautique. Les processus de fiabilisation, dans leur majorité, sont orientés, en cas de panne, vers un isolement de la source du défaut, pour permettre un fonctionnement en mode dégradé, supporté par le système. Par ailleurs, un dispositif de sécurisation de bras d'onduleur est décrit : un sectionneur commandé à thyristors et fusible (SCTF2). Ce système permet d'isoler électriquement le bras d'onduleur victime d'un défaut au sein d'un onduleur triphasé. L'emplacement de prédilection du SCTF2 est la connexion bras d'onduleur et bus continu d'alimentation. Les simulations de ce système de fiabilisation sont menées sur PSIM. Ce mémoire propose des modélisations approchées, pour l'outil de CAO adopté, des composants IGBT et fusibles, lorsque ces derniers sont soumis à un régime de courant extrême (court-circuit). / This manuscript of thesis was written in two parts for the "More Electric Aircraft" program. The first part presents in great detail the context of the thesis that is (i.e) the processes which allow electrifying the most of classic aircraft-systems. In this part, an example of special electromechanical actuator build in the More Electric aircraft program will be presented with meticulous care, in particular its command and supply systems. The second part, more extensive, is devoted to various solutions which improve the reliability of the power-electric systems. With the growth of the electrification of the aircrafts, several solutions of this kind will be multiplicated on board, but today most of these solutions haven't the reliability intended to the aeronautical applications. For the most part, the reliability processes consist in isolating the origins of a breakdown, in order that the system can continue to work in a debased mode. In addition, a system which protects inverter's legs is described; it's a controlled circuit breaker which uses thyristors and fuses (SCTF2). This system of reliability allows electrical isolating of faulty inverter's leg in a three phase inverter. The preferential position of a SCTF2 is the connexion between inverter's leg and the DC bus. Simulations of the SCTF2 are done on PSIM software. For PSIM, this manuscript poposes some approximative modelisations of the components like IGBT and fuse when they are subjected to a dangerous high-current (short-circuit).

Page generated in 0.0792 seconds