Spelling suggestions: "subject:"electrospun nanofibres"" "subject:"electronspun nanofibres""
1 |
Fabrication and characterization of electrospun alumina nanofibre reinforced polycarbonate compositesSun, Wenjun January 2017 (has links)
Fibres with ultra-high tensile strength have attracted unprecedented attention due to the rapidly increasing demand for strong fibre reinforced composites in various fields. However, despite a theoretical strength as high as around 46 GPa, current commercial alumina fibres only reach strength value of around 3.3 GPa because of the defects between the grains. Electrospinning provides a method to produce ceramic nanofibres with diameters reduced to nano-scale with effectively enhanced strength. Different calcination procedures were applied to study the morphology and crystal structure growth of alumina. Tested with a custom-built AFM-SEM system, the tensile strength of single crystal α-alumina nanofibres were found to have little dependence on diameter variations, with an average value of 11.4±1.1 GPa. While the strength of polycrystalline γ-alumina nanofibres were controlled by defects, showing a diameter dependent mechanism. Apart from the intrinsic properties of the fibre and matrix, the interface between them also plays an important role in determining composite mechanical properties. Collected by a rotating drum during electrospinning, aligned fibres were used to reinforce polycarbonate matrix for fabricating composite. The composite mechanical properties were successfully improved after surface modification with silane coupling agent. With a fibre volume fraction of around 7.5%, the composite strength doubled and the Young's modulus increased by a factor of 4 when compared with the pure polycarbonate. Apart from surface modification, the fibre/matrix interface can also be affected by transcrystallinity. Transcrystalline layers were formed in the alumina reinforced polycarbonate composites after annealing. Significant enhancement of the Young's modulus of the crystallized polycarbonate by a factor of 3 compared to the amorphous phase was measured directly using AFM based nanoindentation. Optimization of the Young's modulus is suggested as a balance between extending the annealing time to grow the transcrystalline layer and reducing the processing time to suppress void development in the PC matrix.
|
2 |
Nanofilms de platine supportes sur des nanofibres de carbone et de nickel : nouveaux catalyseurs pour piles à combustible / Platinum Thin Films Supported on Carbon and Nickel Nanofibres as Catalyst for PEM Fuel CellsFarina, Filippo 26 November 2018 (has links)
De nouveaux électrocatalyseurs avec nanofilm de platine pour la réaction de réduction de l'oxygène avec application dans des piles à combustible à membrane échangeuse de protons ont été développés. Ces catalyseurs comprennent des films minces de platine déposés sur des réseaux de nanofibres de carbone. Des supports de nanofibres de carbone et de nanobrosse ont été préparés par électrofilage suivi de traitements thermiques pour la stabilisation et la graphitisation. Une méthode innovante d’électrodéposition pulsée à surpotentiel élevé a été développée pour le dépôt de nanofilm de platine sur des supports de nanofibres de carbone et de nanobrosse, ainsi que sur du graphite pyrolytique hautement orienté dont la planéité permet de caractériser le dépôt avec microscopie à force et électronique. Ces approches ont conduit à des électrodes en nanofibres autosupportées avec une porosité qui a été accordée à un matériau de plus en plus dense d'un côté à l'autre, où le côté présentant la plus grande surface était utilisé pour déposer du platine. Les électrodes ont été caractérisées ex situ en utilisant voltampérométrie cyclique, en démontrant une activité plus élevée pour la réaction de réduction de l'oxygène et une durabilité contre des cycles de tension plus élevée que les catalyseurs classiques au platine sur carbone. Ces électrodes ont été assemblés directement avec une membrane et une anode et caractérisés in situ dans une pile à combustible. Des films minces de platine ont également été préparés à la surface des nanofibres de nickel en utilisant le nouvelle approche de l'échange galvanique assisté par micro-ondes ; divers paramètres expérimentaux ont été étudiés pour déterminer leur effet sur l'échange et la morphologie du platine. Les fibres de nickel@platine résultantes ont présenté une électroactivité élevée pour la réaction de réduction d'oxygène et ont été caractérisées comme des électrocatalyseurs non supportés à la cathode d'un assemblage d'électrodes à membrane; des travaux supplémentaires sont nécessaires pour les stabiliser contre la perte de nickel de l’électrocatalyseur vers l’électrolyte. / Novel platinum thin film electrocatalysts for the oxygen reduction reaction of proton exchange membrane fuel cells were developed. These catalysts comprise platinum thin films deposited on carbon nanofibrous webs. Carbon nanofibres and nanobrush supports were prepared by electrospinning followed by thermal treatments for stabilisation and graphitisation. An innovative pulsed high overpotential electrodeposition method was developed to deposit platinum thin films both on carbon nanofibre and nanobrush supports, and also on highly oriented pyrolytic graphite, the planarity of which allowed detailed characterisation of the conformity, contiguity and thickness of the platinum films using atomic force and electron microscopy. These approaches led to self-standing nanofibre electrodes with porosity that was tuned to increasingly dense material from one side to the other, where the side presenting highest surface area was used to deposit platinum. The electrodes were characterised ex situ using cycling voltammetry where they demonstrated higher activity for the oxygen reduction reaction and greater durability on voltage cycling than conventional platinum on carbon catalysts. They were also assembled directly with a membrane and anode and characterised in situ in a single fuel cell. Thin platinum films were also prepared at the surface of nickel nanofibres using a novel approach to galvanic exchange assisted by microwaves, and a range of experimental parameters was investigated to determine their effect on the extent of exchange and the resulting platinum morphology. While the resulting nickel@platinum core@shell fibres demonstrated high electroactivity for the oxygen reduction reaction and were characterised as unsupported electrocatalysts at the cathode of a membrane electrode assembly, further work is required to stabilise them against nickel leaching from the catalyst to the electrolyte.
|
Page generated in 0.0826 seconds