• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrospinning of poly([epsilon]-Caprolactone)

Hsu, Chen-Ming. January 2003 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: electrospinning. Includes bibliographical references (p. 95-96).
2

Electrospinning of Poly(£`-Caprolactone)

Hsu, Chen-Ming 29 April 2003 (has links)
The objectives of the present work are to produce porous polymeric scaffolds with Poly (ƒÕ-Caprolactone), PCL, by electrospinning. The structure in the electrospun polymer has been characterized by scanning electron microscopy. The effects of process variables such as voltage, solution concentration and deposition distance on the structure have been studied. The physical phenomena associated with the electrospinning process have been highlighted through high speed digital photography. The feasibility of using additives to the solution to control the structure of the porous construct has been examined. The data indicate that a range of structural morphologies can be produced in the electrospun polymer. Solid and hollow sub-micron beads can be produced by electrospraying of dilute solutions. Beyond a critical solution concentration of about 4 wt% PCL, elongational flow stabilizes the fibrous structure and a web of interconnected sub-micron fibers may be obtained. The average fiber diameter increases with concentration. A combination of elongated beads and fibers, known as the bead-on-string morphology is also observed under many conditions. The fibrous structure is stabilized at high voltages. The fiber diameter in the electrospun polymer typically exhibits a bimodal distribution. The addition of DMF (N,N-dimethylformamide) to the solution increases the deposition rate significantly and leads to extensive splaying, thereby reducing the fiber diameter to about 150 nm. DSC data indicate that electrospinning may lower the degree of crystallinity in the polymer. The wide of range of structural characteristics that may be obtained in the electrospun polymer make it suitable for many biomedical applications including medical textiles, drug delivery, membrane separation, tissue engineering and organ regeneration.
3

Effects of Solution Rheology on Electrospinning of Polystyrene

Eda, Goki 27 April 2006 (has links)
The effects of fundamental solution parameters including polymer molecular weight, concentration and solvent on electrospinning of polystyrene were investigated. Each parameter was found to play a vital role in determining the morphology of beads and fibers. For dilute to semi-dilute solutions, a wide range of bead structures including wrinkled beads, cups, dishes, and toroids were observed when a volatile solvent, tetrahydrofuran, was used. Various rheological regimes where these structures may be obtained were identified. The morphological transition from bead to fiber was characterized by two critical concentrations, Ci and Cf, at which incipient and complete fibers may be observed respectively. These values were determined as a function of molecular weight. A comparison with the models proposed in the literature indicated that solvent evaporation may play an important role in jet stabilization. The fiber diameter and distribution was found to decrease significantly with molecular weight at the critical concentration, Cf. The use of N,N-dimethylformamide, a solvent with relatively high dielectric constant, also resulted in an appreciable reduction in fiber diameter and improved uniformity. The observation of solution jet evolution during the process with high speed camera (2000 frames/s) indicated that solvents have a significant influence on the jet breakdown behavior. Two types of behavior were identified based on the extent of extensional flow, bending instability, and the number of secondary jets. Solvents with high dielectric constant were found to induce extensive bending instability, which resulted in extremely fine microstructures of electrospun polymer.

Page generated in 0.05 seconds