Spelling suggestions: "subject:"elektronenbeschleunigung"" "subject:"elektronenbeschleuniger""
1 |
Electron acceleration in a flare plasma via coronal circuitsÖnel, Hakan January 2008 (has links)
The Sun is a star, which due to its proximity has a tremendous influence on Earth. Since its very first days mankind tried to "understand the Sun", and especially in the 20th century science has uncovered many of the Sun's secrets by using high resolution observations and describing the Sun by means of models.
As an active star the Sun's activity, as expressed in its magnetic cycle, is closely related to the sunspot numbers. Flares play a special role, because they release large energies on very short time scales. They are correlated with enhanced electromagnetic emissions all over the spectrum. Furthermore, flares are sources of energetic particles. Hard X-ray observations (e.g., by NASA's RHESSI spacecraft) reveal that a large fraction of the energy released during a flare is transferred into the kinetic energy of electrons. However the mechanism that accelerates a large number of electrons to high energies (beyond 20 keV) within fractions of a second is not understood yet.
The thesis at hand presents a model for the generation of energetic electrons during flares that explains the electron acceleration based on real parameters obtained by real ground and space based observations.
According to this model photospheric plasma flows build up electric potentials in the active regions in the photosphere. Usually these electric potentials are associated with electric currents closed within the photosphere. However as a result of magnetic reconnection, a magnetic connection between the regions of different magnetic polarity on the photosphere can
establish through the corona. Due to the significantly higher electric conductivity in the corona, the photospheric electric power supply can be closed via the corona. Subsequently a high electric current is formed, which leads to the generation of hard X-ray radiation in the dense chromosphere.
The previously described idea is modelled and investigated by means of electric circuits. For this the microscopic plasma parameters, the magnetic field geometry and hard X-ray observations are used to obtain parameters for modelling macroscopic electric components, such as electric resistors, which are connected with each other. This model demonstrates that such a coronal electric current is correlated with large scale electric fields, which can accelerate the electrons quickly up to relativistic energies.
The results of these calculations are encouraging. The electron fluxes predicted by the model are in agreement with the electron fluxes deduced from the measured photon fluxes. Additionally the model developed in this thesis proposes a new way to understand the observed double footpoint hard X-ray sources. / Die Sonne ist ein Stern, der aufgrund seiner räumlichen Nähe einen großen Einfluss auf die Erde hat. Seit jeher hat die Menschheit versucht die "Sonne zu verstehen" und besonders im 20. Jahrhundert gelang es der Wissenschaft viele der offenen Fragen mittels Beobachtungen zu beantworten und mit Modellen zu beschreiben.
Die Sonne ist ein aktiver Stern, dessen Aktivität sich in seinem magnetischen Zyklus ausdrückt, welcher in enger Verbindung zu den Sonnenfleckenzahlen steht. Flares spielen dabei eine besondere Rolle, da sie hohe Energien auf kurzen Zeitskalen freisetzen. Sie werden begleitet von erhöhter Strahlungsemission über das gesamte Spektrum hinweg und setzen darüber hinaus auch energetische Teilchen frei. Beobachtungen von harter Röntgenstrahlung (z.B. mit der RHESSI Raumsonde der NASA) zeigen, dass ein großer Teil der freigesetzten Energie in die kinetische Energie von Elektronen transferiert wird. Allerdings ist nach wie vor nicht verstanden, wie die Beschleunigung der vielen Elektronen auf hohe Energien (jenseits von 20 keV) in Bruchteilen einer Sekunde erfolgt.
Die vorliegende Arbeit präsentiert ein Model für die Erzeugung von energetischen Elektronen während solarer Flares, das auf mit realen Beobachtungen gewonnenen Parametern basiert. Danach bauen photosphärische Plasmaströmungen elektrische Spannungen in den aktiven Regionen der Photosphäre auf. Für gewöhnlich sind diese Potentiale mit elektrischen Strömen verbunden, die innerhalb der Photosphäre geschlossen sind. Allerdings kann infolge von magnetischer Rekonnektion eine magnetische Verbindung in der Korona aufgebaut werden, die die Regionen von magnetisch unterschiedlicher Polarität miteinander verbindet. Wegen der deutlich höheren koronalen elektrischen Leitfähigkeit, kann darauf die photosphärische Spannungsquelle über die Korona geschlossen werden. Das auf diese Weise generierte elektrische Feld führt nachfolgend zur Erzeugung eines hohen elektrischen Stromes, der in der dichten Chromosphäre harte Röntgenstrahlung generiert.
Die zuvor erläuterte Idee wird mit elektrischen Schaltkreisen modelliert und untersucht. Dafür werden die mikroskopischen Plasmaparameter, die Geometrie des Magnetfeldes und Beobachtungen der harten Röntgenstrahlung verwendet, um makroskopische elektronische Komponenten, wie z.B. elektrische Widerstände zu modellieren und miteinander zu verbinden. Es wird gezeigt, dass der auftretende koronale Strom mit hohen elektrischen Feldern verbunden ist, welche Elektronen schnell auf hohe relativistische Energien beschleunigen können.
Die Ergebnisse dieser Berechnungen sind ermutigend. Die vorhergesagten Elektronenflüsse stehen im Einklang mit aus gemessenen Photonenflüssen gewonnenen Elektronenflüssen. Zudem liefert das Model einen neuen Ansatz für das Verständnis der harten Röntgendoppelquellen in den Fußpunkten.
|
2 |
Electron acceleration at localized wave structures in the solar coronaMiteva, Rositsa Stoycheva January 2007 (has links)
Our dynamic Sun manifests its activity by different phenomena: from the 11-year cyclic sunspot pattern to the unpredictable and violent explosions in the case of solar flares. During flares, a huge amount of the stored magnetic energy is suddenly released and a substantial part of this energy is carried by the energetic electrons, considered to be the source of the nonthermal radio and X-ray radiation. One of the most important and still open question in solar physics is how the electrons are accelerated up to high energies within (the observed in the radio emission) short time scales. Because the acceleration site is extremely small in spatial extent as well (compared to the solar radius), the electron acceleration is regarded as a local process. The search for localized wave structures in the solar corona that are able to accelerate electrons together with the theoretical and numerical description of the conditions and requirements for this process, is the aim of the dissertation.
Two models of electron acceleration in the solar corona are proposed in the dissertation:
I. Electron acceleration due to the solar jet interaction with the background coronal plasma (the jet--plasma interaction)
A jet is formed when the newly reconnected and highly curved magnetic field lines are relaxed by shooting plasma away from the reconnection site. Such jets, as observed in soft X-rays with the Yohkoh satellite, are spatially and temporally associated with beams of nonthermal electrons (in terms of the so-called type III metric radio bursts) propagating through the corona. A model that attempts to give an explanation for such observational facts is developed here. Initially, the interaction of such jets with the background plasma leads to an (ion-acoustic) instability associated with growing of electrostatic fluctuations in time for certain range of the jet initial velocity. During this process, any test electron that happen to feel this electrostatic wave field is drawn to co-move with the wave, gaining energy from it. When the jet speed has a value greater or lower than the one, required by the instability range, such wave excitation cannot be sustained and the process of electron energization (acceleration and/or
heating) ceases. Hence, the electrons can propagate further in the corona and be detected as type III radio burst, for example.
II. Electron acceleration due to attached whistler waves in the upstream region of coronal shocks (the electron--whistler--shock interaction)
Coronal shocks are also able to accelerate electrons, as observed by the so-called type II metric radio bursts (the radio signature of a shock wave in the corona). From in-situ observations in space, e.g., at shocks related to co-rotating interaction regions, it is known that nonthermal electrons are produced preferably at shocks with attached whistler wave packets in their upstream regions. Motivated by these observations and assuming that the physical processes at shocks are the same in the corona as in the interplanetary medium, a new model of electron acceleration at coronal shocks is presented in the dissertation, where the electrons are accelerated by their interaction with such whistlers. The protons inflowing toward the shock are reflected there by nearly conserving their magnetic moment, so that they get a substantial velocity gain in the case of a quasi-perpendicular shock geometry, i.e, the angle between the shock normal and the upstream magnetic field is in the range 50--80 degrees. The so-accelerated protons are able to excite whistler waves in a certain frequency range in the upstream region. When these whistlers (comprising the localized wave structure in this case) are formed, only the incoming electrons are now able to interact resonantly with them. But only a part of these electrons fulfill the the electron--whistler wave resonance condition. Due to such resonant interaction (i.e., of these electrons with the whistlers), the electrons are accelerated in the electric and magnetic wave field within just several whistler periods. While gaining energy from the whistler wave field, the electrons reach the shock front and, subsequently, a major part of them are reflected back into the upstream region, since the shock accompanied with a jump of the magnetic field acts as a magnetic mirror. Co-moving with the whistlers now, the reflected electrons are out of resonance and hence can propagate undisturbed into the far upstream region, where they are detected in terms of type II metric radio bursts.
In summary, the kinetic energy of protons is transfered into electrons by the action of localized wave structures in both cases, i.e., at jets outflowing from the magnetic reconnection site and at shock waves in the corona. / Die Sonne ist ein aktiver Stern, was sich nicht nur in den allseits bekannten Sonnenflecken, sondern auch in Flares manifestiert. Während Flares wird eine große Menge gespeicherter, magnetischer Energie in einer kurzen Zeit von einigen Sekunden bis zu wenigen Stunden in der Sonnenkorona freigesetzt. Dabei werden u.a. energiereiche Elektronen erzeugt, die ihrerseits nichtthermische Radio- und Röntgenstrahlung, wie sie z.B. am Observatorium für solare Radioastronomie des Astrophysikalischen Instituts Potsdam (AIP) in Tremsdorf und durch den NASA-Satelliten RHESSI beobachtet werden, erzeugen. Da diese Elektronen einen beträchtlichen Anteil der beim Flare freigesetzten Energie tragen, ist die Frage, wie Elektronen in kurzer Zeit auf hohe Energien in der Sonnenkorona beschleunigt werden, von generellem astrophysikalischen Interesse, da solche Prozesse auch in anderen Sternatmosphären und kosmischen Objekten, wie z.B. Supernova-Überresten, stattfinden.
In der vorliegenden Dissertation wird die Elektronenbeschleunigung an lokalen Wellenstrukturen im Plasma der Sonnenkorona untersucht. Solche Wellen treten in der Umgebung der magnetischen Rekonnektion, die als ein wichtiger Auslöser von Flares angesehen wird, und in der Nähe von Stoßwellen, die infolge von Flares erzeugt werden, auf. Generell werden die Elektronen als Testteilchen behandelt. Sie werden durch ihre Wechselwirkung mit den elektrischen und magnetischen Feldern, die mit den Plasmawellen verbunden sind, beschleunigt.
Infolge der magnetischen Rekonnektion als Grundlage des Flares werden starke Plasmaströmungen (sogenannte Jets) erzeugt. Solche Jets werden im Licht der weichen Röntgenstrahlung, wie z.B. durch den japanischen Satelliten YOHKOH, beobachtet. Mit solchen Jets sind solare Typ III Radiobursts als Signaturen von energiereichen Elektronenstrahlen in der Sonnenkorona verbunden. Durch die Wechselwirkung eines Jets mit dem umgebenden Plasma werden lokal elektrische Felder erzeugt, die ihrerseits Elektronen beschleunigen können. Dieses hier vorgestellte Szenarium kann sehr gut die Röntgen- und Radiobeobachtungen von Jets und den damit verbundenen Elektronenstrahlen erklären.
An koronalen Stoßwellen, die infolge Flares entstehen, werden Elektronen beschleunigt, deren Signatur man in der solaren Radiostrahlung in Form von sogenannten Typ II Bursts beobachten kann. Stoßwellen in kosmischen Plasmen können mit Whistlerwellen (ein spezieller Typ von Plasmawellen) verbunden sein. In der vorliegenden Arbeit wird ein Szenarium vorgestellt, das aufzeigt, wie solche Whistlerwellen an koronalen Stoßwellen erzeugt werden und durch ihre resonante Wechselwirkung mit den Elektronen dieselben beschleunigen. Dieser Prozess ist effizienter als bisher vorgeschlagene Mechanismen und kann deshalb auch auf andere Stoßwellen im Kosmos, wie z.B. an Supernova-Überresten, zur Erklärung der dort erzeugten Radio- und Röntgenstrahlung dienen.
|
Page generated in 0.0779 seconds