Spelling suggestions: "subject:"elektronikk"" "subject:"elektronikken""
191 |
Design of a UHF Radio System for Small LEO SatellitesNarverud, Erik January 2007 (has links)
<p>The thesis concerns the design and prototype construction of a UHF half-duplex radio system, intended for use on board a small student satellite. The assignment is a continuance of a project assignment done during the fall of 2006, concerning the outline and specification of a new student satellite project at NTNU. The report details performance-deciding parameters of satellite communication systems operating at UHF frequencies, and fundamental information theory. Theory and application of RF design is discussed, along with complications in electronic engineering due to space environment factors. The report goes on to describe the design process and prototype development of a UHF transceiver intended for use in small, low power LEO satellites.</p>
|
192 |
Reduction of speckle contrast in laser based HDTV projection displaysLifjeld, Anders January 2007 (has links)
<p>In this assignment the theoretical background for the nature of speckle is presented and practical work was done to reduce the speckle effect in a display system based on a laser source. This was done without any picture modulators, or any kind of line scan or flying spot scanning. Work was done to find the right setup to be able to as easy as possible characterize the statistics of the speckle in an image. A still image of an expanded laser spot worked as an image. A series of test sets were carried out to address the different factors which could make a difference on the speckle contrast and their role in such systems.</p>
|
193 |
Polarization Effects in Wavelength Converters based on Semiconductor Optical AmplifiersMartin Martin, Raul January 2007 (has links)
<p>Polarization Effects in Wavelength Converters based on Semiconductor Optical Amplifiers</p>
|
194 |
Quantum Cascade Laser for Spectroscopic Gas DetectionSletbakk, Bjørn January 2007 (has links)
<p>In this project it has been focused on the use of a 7.42 um, 4 mW Quantum Cascade Laser in trace gas detection spectroscopy. Norsk Elektro Optikk (NEO) is in possession of a Nanoplus G2102/DFB2/5-12 QCL laser, that can be used in spectroscopic detection of H2O, CO2 and SO2 It has been attempted to construct a setup that can be used for spectroscopic measurements using a self constructed current driver module to produce current pulses for the QCL. The QCL is operated in pulsed mode, with pulses of <500 ns width, and a 1 kHz pulse repetition frequency. Temperature control of the laser has been conducted with a LaserGas II SP monitor module, and temperature has been kept at 280 K during testing. Initially, various test have been conducted to ensure the general functionality of the driver module, and to avoid damage to the QCL. Two different solutions for the transmission line from the driver to the QCL have also been examined, and it has been concluded that the current pulses supplied to the laser are of good quality with minor broadening and short rise/fall times. Furthermore an I-V characteristic for the laser has been produced by incrementing the laser driving current, and measuring the corresponding laser voltage. Measurements of the laser output power have been conducted using a CaF2 collimating lens to focus the laser beam onto a PVI-2TE-8 Vigo photovoltaic detector from Vigo Systems S.A. It has proved difficult to obtain a good signal from the detector, with the maximum voltage measured across a 50Ω shunt resistor being 3 mV. This is 100-200 mV less than what should be expected. Various methods of noise reduction have been applied to improve the detected signal, none have however provided any noticeable improvements. Several possible reasons for the generally low output have been examined.</p>
|
195 |
Accurate Delay Test of FPGA Routing Network by Branched Test PathsDikkanen, Elena Davydova January 2007 (has links)
<p>This Masters thesis documents a new test method for detection of small delay faults in FPGA routing network. The main purpose of the test is accurate detection of faults in all parts of the network. The second aim is minimizing test application time. The work of the thesis consisted of four parts. First, a literature study was performed to get background knowledge of FPGA architecture and basics of testing. Second, detection accuracy was defined and measured in SPICE for test paths with different number of fan-out. Third, test configurations were developed. And finally, detection accuracies for the proposed test method were calculated. The SPICE measurements were performed on an interconnect model of FPGA. They revealed that detection accuracy of defects tested by branches of a test path is less than detection accuracy of defects tested by stems of a test path. In addition, it was observed that detection accuracy is best in the beginning of a test path. In the proposed test method detection accuracy is improved by testing all segments outside switch matrices by test path stems, and applying test patterns to all bidirectional segments in both directions. A comparison to two previous test methods showed that the proposed test method is more accurate while keeping the same number of test configurations. The detection accuracy can be improved further by allowing more test configurations.</p>
|
196 |
Cosine Modulated Filter Banks Systems in the Presence of Multipath TransmissionPérez Tejada, Natalia January 2007 (has links)
<p>Cosine Modulated Filter Banks Systems in the Presende of Multipath Transmission</p>
|
197 |
Interactive Television on Handheld Devices : Handling of metadata and creating interactivity in T-DMB and DVB-HAndersen, Andreas Engen January 2007 (has links)
<p>As broadcasted television is changing from analogue to digital transmission, the television industry has to adapt itself for a new reality. Digitization opens for a wide array of new ways of watching television, where interactivity and mobility are paramount. The difference in the experience lies in the interactive part, inviting the user to take part in what happens on the mobile screen. What the mobile telephone lacks in screen size it can now make up for with its interactive potential. Instead of just watching television, the user now interacts with it. As a result, the television experience can be tailored to suit consumers with different requirements. In this study I look at true-time broadcasted television to handheld devices over the standards achieved in Europe and Korea today, DVB-H and T-DMB, and how interactivity between content provider and end-user can be achieved. I also look into how metadata plays a crucial role in interactive television, and the means to utilize metadata to favor the end-users demands according to standards such as XML, MPEG and Tv-Anytime. By supplying metadata to i.e sport or reality shows, and hence creating interactivity between content provider and end-user, a new marked for television is made possible. Electronic program guides (EPGs), teletext and weather forecasts for handhelds are examples of ways that metadata can be utilized to create an interactive experience for the end-user.</p>
|
198 |
Design of ground station antenna for a double CubeSat student projectOliver Miranda, Mireia January 2007 (has links)
<p>Give an introduction to the proposed double CubeSat system and an overview of communication requirements and the propagation characteristics that influence the link budget. Based on the above findings, derive requirements for the ground station antenna. Emphasize simplicity and easy construction and propose an antenna system that may meet the requirements. Investigate it theoretically with available software to optimize its dimensions. A scale model of the antenna should finally be built and its main properties measured in an anechoic chamber.</p>
|
199 |
Multiple Power DomainsLysfjord, Ivar Håkon January 2008 (has links)
<p>When new transistor technology is used in a microcontroller design, the transistors become smaller. They cannot withstand the same voltages as older technology, because of their size. The automotive industry still uses 5V as a standard voltage, and the automotive industry is a major costumer for microcontroller companies. The microcontroller must therefore be able to use5V. This must be done without the need of external voltage regulator. To still be a supplier to the automotive industry, the AVR needs to be able to withstand voltages up to 5.5V. The main problem with the new transistor technology is the leakage currents. Traditionally, the CMOS devices have used power only when during switching of logical levels. This is no longer true, since the leakage currents have become so large. When using new transistor technology, the dynamic power usage will be reduced, but the total power usage will be increased, if nothing is done to prevent it. One solution to this is to make a multiple power domain microcontroller. The idea is that one power domain can withstand voltages up to 5.5V. The microcontroller then uses an internal voltage regulator to scale down the voltage to a suitable level. The low voltage area will then have a suitable voltage level, which reduces both the dynamic- and leakage power usage. The different voltage domains uses different clock sources, so communicating between them requires both level shifters to deal with the different voltage levels, and synchronization logic to prevent metastability. This assignment uses two voltage domains, VIO and VCORE. Since voltage regulators are quite inefficient, it is most efficient to use only two domains. The VCORE domain contains most of the digital logic of the microcontroller, such as the CPU, SRAM and timers. This domain uses a high-speed clock source, and a VCORE data bus to communicate between each other. To communicate with the VIO domain, the data bus is connected to the VIO data bus through an asynchronous communication scheme block. This is because the VIO domain uses a low speed clock source. The usage of individual clock sources prevents clock skew problems that may occur when passing level shifters, and there is power saving by using only a low speed clock source on the VIO domain. The VIO domain contains the Power Management Unit (PMU). The PMU shall control the power usage of the microcontroller. During active mode, the PMU can set unused modules in sleep mode, or shut them completely off. Most of the power savings are during sleep mode though. This is because a microcontroller such as the AVR spends most of the time in sleep mode. To reduce the power usage in sleep mode, the leakage currents needs to be reduced. The best way of doing so is to disconnect the power from the circuits. If the voltage regulator is disconnected, and all the inputs are set to high impedance, the VCORE domain is completely disconnected from the power, and uses absolutely no power. An asynchronous wake up circuit is designed to make it possible to wake up the microcontroller from a sleep mode without the usage of synchronized digital logic. Then the low frequency oscillator can be turned off, and even more power is saved. The major disadvantage of the multiple power domain solution is the start up time from a sleep mode. If the power to the low voltage area is disconnected, the start up requires that all the capacitors become charged before the chip can start running again. The oscillator is shut off, and it takes time to stabilize the oscillator. Especially since the oscillator requires some stability in the voltage, and the voltage may not stable until the capacitors are charged. Simulations shows that the multiple power domain solution has great potential of power saving. The proposed asynchronous wake up circuit uses only 1.2275nA. This is significantly smaller than the AVR uses in the deepest sleep mode today. To get a secure microcontroller, a reset circuit has to be on to be able to reset the AVR if necessary. The power usage of the reset circuit used today is confidential Atmel information, and cannot be published in this assignment. By looking at the data sheet of a pico power circuit of the AVR, the ATmega329p, one can see that in the deepest sleep mode, the microcontroller uses 40nA at 1.8V. By assuming that the reset circuit does not use more that half of this current, the total amount of power that saved during a sleep mode by using the multiple power domain solution is about 47%.</p>
|
200 |
Full-waveform inversion studiesThomassen, Espen January 2008 (has links)
<p>In this master thesis, full-waveform inversion (FWI) was applied to a synthetic, and very complex, geological structure containing a salt body. The main objective was to evaluate the capabilities of FWI to estimate velocities in this context, and more specially below the salt. Seismic depth imaging is now the preferred seismic imaging tool for today's most challenging exploration projects. Seismic depth imaging problem usually requires the definition of a smooth background velocity model before determining the short wavelength component of the structure by pre-stack depth migration. It is well established that success of pre-stack depth migration in complex geological media strongly depends from the definition of the background velocity model. Standard tools for building velocity models generally fail to reconstruct the correct sub-salt velocities. Sub-salt imaging is a very challenging problem and a lot of resources are spent trying to solve this problem, since salt bodies in the sub-surface are known to be very good hydrocarbon traps. In this master thesis, the work have been performed on a modified version of the 2004 BP velocity benchmark model. This model represents a very interesting salt context, where conventional imaging methods can not provide any good results. After describing the seismic inversion problem, and the FWI theory and code used in this work, the application to the 2004 BP benchmark model is described. FWI was first applied to the synthetic data using a starting model derived by smoothing the true velocity model. This is an easy way to ensure an adequate starting model, as the method is very dependent on a good starting model. In the inversion process 17 frequency components were used, ranging between 1 and 15 Hz. This resulted in a velocity model that accurately recovered both the salt body and the sub-salt velocities. The average deviation between the true and estimated sub-salt velocities was found to be approximately 6 %. A more realistic starting model was then derived using first-arrival traveltime tomography, a well known method for obtaining velocity models. FWI was applied to this starting model, and the result was also positive when using this starting model. The salt body was well delineated, whereas the sub-salt velocities were generally more inaccurate than for the previous application. The sub-salt velocity difference was increased to roughly 10 %. However, if more effort had been spent on reconstructing a more accurate starting model, the results might have improved. When fewer frequency components are used in the inversion, the result declined. A test using only 6 frequency components showed that the final reconstructed model suffered from a lack of recovered wavenumbers, especially at the deeper and more complex parts of the model. In such a complex medium as the 2004 BP benchmark model, it is hence necessary to introduce wavenumbers by including a sufficient number of frequency components in the inversion process. Other tests that were conducted showed that, in this particular case, the non-linearity of the inversion problem increased with higher frequencies, and was reduced by larger offset ranges included in the seismic data. The inversion is hence sensitive to the starting frequency as well as the starting model. The results in this master thesis demonstrate that FWI has a great potential in reconstructing sub-salt velocities in salt media. For the future, both applying the method to real data from a salt basin area, and develop a migration tool and test the effect of FWI on a migrated image, are interesting challenges.</p>
|
Page generated in 0.0458 seconds