Spelling suggestions: "subject:"clementary particle theory"" "subject:"4elementary particle theory""
11 |
Higher order QCD corrections to diboson production at hadron collidersRontsch, Raoul Horst January 2012 (has links)
Hadronic collider experiments have played a major role in particle physics phenomenology over the last few decades. Data recorded at the Tevatron at Fermilab is still of interest, and its successor, the Large Hadron Collider (LHC) at CERN, has recently announced the discovery of a particle consistent with the Standard Model Higgs boson. Hadronic colliders look set to guide the field for the next fifteen years or more, with the discovery of more particles anticipated. The discovery and detailed study of new particles relies crucially on the availability of high-precision theoretical predictions for both the signal and background processes. This requires observables to be calculated to next-to-leading order (NLO) in perturbative quantum chromodynamics (QCD). Many hadroproduction processes of interest contain multiple particles in the final state. Until recently, this caused a bottleneck in NLO QCD calculations, due to the difficulty in calculating one-loop corrections to processes involving three or more final state particles. Spectacular developments in on-shell methods over the last six years have made these calculations feasible, allowing highly accurate predictions for final state observables at the Tevatron and LHC. A particular realisation of on-shell methods, generalised unitarity, is used to compute the NLO QCD cross-sections and distributions for two processes: the hadroproduction of W<sup>+</sup> W<sup>-</sup>jj, and the hadroproduction of W<sup>+</sup> W<sup>-</sup>jj. The NLO corrections to both processes serve to reduce the scale dependence of the results significantly, while having a moderate effect on the central scale choice cross-sections, and leaving the shapes of the kinematic distributions mostly unchanged. Additionally, the gluon fusion contribution to the next-to-next-to-leading order (NNLO) QCD corrections to W<sup>+</sup> W<sup>-</sup>j productions are studied. These contributions are found to be highly depen- dent on the kinematic cuts used. For cuts used in Higgs searches, the gluon fusion effect can be as large as the NLO scale uncertainty, and should not be neglected. All of the higher-order QCD corrections increase the accuracy and reliability of the theoretical predictions at hadronic colliders.
|
12 |
Aspects of beyond the Standard Model string phenomenologyRosa, Joao P. T. G. January 2010 (has links)
String theory is currently the best-known candidate for a theory of quantum gravity, having the necessary ingredients to describe all known elementary particles and interactions. It also includes several novel features, arising, for instance, from the additional six compact dimensions required for its internal consistency, making it the natural arena to construct extensions of the Standard Model. In this thesis, we analyze some of the new phenomenological aspects introduced by string theory within the framework of low energy effective theories, focusing on their applications to cosmology, astrophysics and collider experiments. We first consider a particular realization of the brane-world scenario in branonium bound states, showing that the orbital motion of a probe antibrane about a central brane stack leads to a resonant amplification of its world-volume scalar modes. We analyze the cosmological development of this process and also its potential relevance for either dark or baryonic matter generation in the early universe. We then focus on the spectrum of quark and lepton string excitations in warped compactifications, modeled by an effective 5-dimensional Randall- Sundrum throat. Motivated by the observed fermion mass hierarchy, we show that the spin-3/2 Regge excitation of the right-handed top quark is the lightest of such resonances in a significant region of parameter space, possibly lying below the TeV scale, and discuss its potential signatures at the Tevatron and at the LHC. Finally, we study the emission of sub-eV scalar particles by maximally rotating Kerr black holes, motivated by the recent string axiverse proposal. We focus on the spectrum of unstable scalar bound states in the superradiant regime, leading to an exponentially large axion cloud around astrophysical black holes, and analyze two semi-analytical methods for computing the growth rate of this instability, comparing the obtained results with previous analytical and numerical analyses.
|
13 |
On connections between dark matter and the baryon asymmetryUnwin, James January 2013 (has links)
This thesis is dedicated to the study of a prominent class of dark matter (DM) models, in which the DM relic density is linked to the baryon asymmetry, often referred to as Asymmetric Dark Matter (ADM) theories. In ADM the relic density is set by a particle-antiparticle asymmetry, in direct analogue to the baryons. This is partly motivated by the observed proximity of the baryon and DM relic densities Ω_{DM} ≈ 5 Ω_{B}, as this can be explained if the DM and baryon asymmetries are linked. A general requisite of models of ADM is that the vast majority of the symmetric component of the DM number density, the DM-antiDM pairs, must be removed for the asymmetry to set the DM relic density and thus to explain the coincidence of Ω_{DM} and Ω_{B}. However we shall argue that demanding the efficient annihilation of the symmetric component leads to a tension with experimental constraints in a large class of models. In order to satisfy the limits coming from direct detection and colliders searches, it is almost certainly required that the DM be part of a richer hidden sector of interacting states. Subsequently, examples of such extended hidden sectors are constructed and studied, in particular we highlight that the presence of light pseudoscalars can greatly aid in alleviating the experimental bounds and are well motivated from a theoretical stance. Finally, we highlight that self-conjugate DM can be generated from hidden sector particle asymmetries, which can lead to distinct phenomenology. Further, this variant on the ADM scenario can circumvent some of the leading constraints.
|
14 |
On moduli stabilisation and cosmology in type IIB flux compactificationsGil Pedro, Francisco M. S. V. January 2012 (has links)
This Thesis studies some aspects of string compactifications with particular em- phasis on moduli stabilisation and cosmology. In Chapter 1 I motivate the study of string compactifications as a way to build on the successes of the Standard Model of Particle Physics and of the theory of General Relativity. Chapter 2 constitutes an overview of the technical background necessary for the study of flux compactifications. I sketch how the desire to obtain a supersymmet- ric theory in four dimensions constrains us to consider compactifications of the ten dimensional theory in six dimensional Calabi-Yau orientifolds. I argue that it is strictly necessary to stabilise the geometry of this compact space in order to have a phenomenologically viable four dimensional theory. I introduce the large volume scenario of type IIB compactifications that successfully incorporates fluxes and sub- leading corrections to yield a four dimensional theory with broken supersymmetry and all geometrical moduli stabilised. The next four Chapters are devoted to the study of some phenomenological aspects of moduli stabilisation and constitute the original work developed for this Thesis. In Chapter 3 I investigate the consequences of field redefinitions in the stabilisation of moduli and supersymmetry breaking, finding that redefinitions of the small blow- up moduli do not significantly alter the standard picture of moduli stabilisation in the large volume scenario and that the soft supersymmetry breaking terms are generated at the scale of the gravitino mass. Chapter 4 deals with the putative destabilisation of the volume modulus by very dense objects. The analysis of the moduli potential shows that even the densest astrophysical objects cannot destabilise the moduli, and that destabilisation is only achievable in the context of black hole formation and cosmological singularities. In Chapter 5 I present a model of inflation within the large volume scenario. The inflaton is identified with a geometric modulus, the fibre modulus, and its potential generated by poly-instanton effects. The model is shown to be robust and consistent with current observational constraints. In Chapter 6 I introduce a model of quintessence, where the quintessence field and its potential share the same origin with the inflationary model of the previous Chapter. This model constitutes a stringy realisation of supersymmetric large extra dimensions, where supersymmetry, the low gravity scale and the scale of dark energy are intrinsically connected. I conclude in Chapter 7 outlining the direction of future research.
|
15 |
Hydrodynamics : from effective field theory to holographyGrozdanov, Saso January 2014 (has links)
Hydrodynamics is an effective theory that is extremely successful in describing a wide range of physical phenomena in liquids, gases and plasmas. However, our understanding of the structure of the theory, its microscopic origins and its behaviour at strong coupling is far from complete. To understand how an effective theory of dissipative hydrodynamics could emerge from a closed microscopic system, we analyse the structure of effective Schwinger-Keldysh Closed-Time-Path theories. We use this structure and the action principle for open systems to derive the energy-momentum balance equation for a dissipative fluid from an effective CTP Goldstone action. Near hydrodynamical equilibrium, we construct the first-order dissipative stress-energy tensor and derive the Navier-Stokes equations. Shear viscosity is shown to vanish, while bulk viscosity and thermodynamical quantities are determined by the form of the effective action. The exploration of strongly interacting states of matter, particularly in the hydrodynamic regime, has been a major recent application of gauge/string duality. The strongly coupled theories involved are typically deformations of large-$N$ SUSY gauge theories with exotic matter that are unusual from a low-energy point of view. In order to better interpret holographic results, an understanding of the weak-coupling behaviour of such gauge theories is essential. We study the exact and SUSY-broken N=1 and N=2 super-QED with finite densities of electron number and R-charge, respectively. Despite the fact that fermionic fields couple to the chemical potentials, the strength of scalar-fermion interactions, fixed by SUSY, prevents a Fermi surface from forming. This is important for hydrodynamical excitations such as zero sound. Intriguingly, in the absence of a Fermi surface, the total charge need not be stored in the scalar condensates alone and fermions may contribute. Gauss-Bonnet gravity is a useful laboratory for non-perturbative studies of the higher derivative curvature effects on transport coefficients of conformal fluids with holographic duals. It was previously known that shear viscosity can be tuned to zero by adjusting the Gauss-Bonnet coupling, λ<sub>GB</sub>, to its maximal critical value. To understand the behaviour of the fluid in this limit, we compute the second-order transport coefficients non-perturbatively in λ<sub>GB</sub> and show that the fluid still produces entropy, while diffusion and sound attenuation are suppressed at all order in the hydrodynamic expansion. We also show that the theory violates a previously proposed universal relation between three of the second order transport coefficients. We further compute the only second-order coefficient thus far unknown, λ<sub>2</sub>, in the N=4 super Yang-Mills theory with the leading-order 't Hooft coupling correction. Intriguingly, the universal relation is not violated by these leading-order perturbative corrections. Finally, by adding higher-derivative photon field terms to the action, we study charge diffusion and non-perturbative parameter regimes in which the charge diffusion constant vanishes.
|
16 |
The standard model to the Planck scaleAllison, Kyle F. January 2014 (has links)
The lack of direct evidence for physics beyond the SM at the LHC has led some to reevaluate the need for such physics to solve the hierarchy problem. Instead, the notion that the SM, or something like it, is valid up to the Planck scale and that technical naturalness is sufficient for solving the hierarchy problem has been suggested. This thesis examines minimal extensions of the SM that address its phenomenological and theoretical shortcomings while avoiding new physics between the electroweak and Planck scales that introduces a hierarchy problem. This thesis first studies two issues with the vMSM - an extension of the SM by three right-handed neutrinos - and their possible solutions. The first issue is the tension between dark matter production in the nuMSM and constraints from the Lyman-alpha forest data. To avoid this tension, the vMSM is extended by a Higgs singlet Φ and neutrino dark matter is produced through the decays of Φ rather than through left-right neutrino mixing. It is shown that the hierarchical parameters of this model can arise from symmetries broken at or near the Planck scale for two specific examples: one in which Φ stabilizes the electroweak vacuum and one in which Φ is a light inflaton. The second issue pertains to Higgs ξ-inflation. In the vMSM, a large non-minimal coupling ξ of the Higgs to gravity gives inflation but leads to a possible violation of perturbative unitarity below the inflationary scale. A study of Higgs ξ-inflation with M<sub>h</sub> ≃ 125-126 GeV, for which the Higgs self-coupling λ runs to small values near the Planck scale, is carried out. It is shown that small λ can significantly reduce ξ required for inflation, but ξ cannot be small enough to address the possible unitarity issue. For small λ, a new region of Higgs ξ-inflation with a large tensor-to-scalar ratio r that is consistent with BICEP2 is discovered. This thesis then studies the technical naturalness and cosmology of a model that addresses the strong CP problem. It is shown that a classically scale invariant DFSZ invisible aξon model with a Peccei-Quinn scalar S, whose couplings to the SM are ultra-weak, can solve the strong CP problem and generate electroweak symmetry breaking via the Coleman-Weinberg mechanism. The ultra-weak couplings of S are natural due to an underlying approξmate shift symmetry. The model contains a light pseudo-Goldstone dilaton that can be consistent with cosmological bounds while the aξon can be the dark matter of the universe. Finally, a summary of the thesis is presented and future research topics are suggested.
|
17 |
Excitations in holographic quantum liquidsDavison, Richard A. January 2012 (has links)
In this thesis we review the gauge/gravity duality and how it can be used to compute the thermodynamic properties and low-energy excitations of holographic quantum liquids - strongly-interacting field theories with a non-zero density of matter. We then study in detail the charge density excitations of two such liquids, the D3/D7 theory and the RN-AdS₄ theory, by computing the poles of their charge density Green's functions, and their charge density spectral functions. Although it is not a Landau Fermi liquid, the charge density excitations of the D3/D7 theory display many of the same properties as one, including a collisionless/hydrodynamic crossover as the temperature is increased. In contrast to this, the charge density (and energy density) excitations of the RN-AdS₄ theory do not share these properties but behave in a way that cannot be explained by Landau's theory of interacting fermionic quasiparticles. This is consistent with other results which indicate that this is not a Landau Fermi liquid.
|
Page generated in 0.1546 seconds