Spelling suggestions: "subject:"eleutherodactylus coque"" "subject:"eleutherodactylus caqui""
1 |
Expression of the endodermal marker, EcSox17, during embryogenesis of the direct developing frog, Eleutherodactylus coquiSingamsetty, Srikanth. January 2005 (has links)
Thesis (M.S.)--Duquesne University, 2005. / Title from document title page. Abstract included in electronic submission form. Includes bibliographical references (p. 68-73) and index.
|
2 |
Does the invasive tree, Falcataria moluccana facilitate high population density of the invasive Puerto Rican frog, Eleutherodactylus coqui? /McGuire, Raymond January 2009 (has links)
Theses (M.S.)--University of Hawai'i at Hilo, 2008. / Advisor : Mautz, William Bibliography : p.39-42.
|
3 |
Relationships Among Invasive Coqui Frogs, the Small Indian Mongoose and Rat Species in HawaiiHill, Shane A. 01 August 2018 (has links)
Non-native species are increasing globally, and with this increase, it is likely that there will be new, unique relationships found among non-natives as well as additional impacts on native species. Rats and mongooses have been introduced to islands throughout the world where they impact native species, including birds, reptiles, and amphibians. The coqui frog was introduced to Hawaii in the 1980’s, where there were already abundant rat and mongoose populations. Previous research suggests that the high densities of coqui frogs may provide enough of a new food source for mongooses and rats that their populations would grow larger than they would without coqui frogs, and that this would exacerbate the negative effects that these predators have on native birds.
We investigated whether there are relationships between coqui presence, and the local abundance of introduced rats and mongoose on the island of Hawaii. We also investigated at these 12 sites whether there were indirect effects of coquis on bird nest predation rates using camera traps on artificial nests. Finally, we interpret our results in light of an analysis of the stomach contents of mongooses and rats, and data collected from remote cameras monitoring scavengers of dead coqui frogs.
We compared abundances of mammals in coqui invaded plots and uninvaded plots. In areas where coquis were present, we found a greater number of mongooses, and less Pacific rats. Both predators consume coquis, but mongooses were more important consumers of live and dead coquis. Shifts in mongoose and rat diets were observed in coqui invaded and uninvaded plots. It may be that coqui frogs are competing with rats because we found more fruit in rat stomachs collected in coqui invaded compared to uninvaded plots. We did not observe any difference in nest predation rates with and without coquis. Our results show that the coqui may serve as novel prey and/or competitors to non-native mammals.
|
4 |
Chytridiomycosis in the Direct-developing Frogs of Puerto RicoJanuary 2013 (has links)
abstract: Epidemiological theory normally does not predict host extinction from infectious disease because of a host density threshold below which pathogens cannot persist. However, host extinction can occur when a biotic or abiotic pathogen reservoir allows for density-independent transmission. Amphibians are facing global population decline and extinction from the emerging infectious disease chytridiomycosis, caused by the fungus Batrachochytrium dentrobatidis (Bd). I use the model species Eleutherodactylus coqui to assess the impact of Bd on terrestrial direct-developing frog species, a common life history in the tropics. I tested the importance of two key factors that might influence this impact and then used laboratory experiments and published field data to model population-level impacts of Bd on E. coqui. First, I assessed the ontogenetic susceptibility of E. coqui by exposing juvenile and adult frogs to the same pathogen strain and dose. Juveniles exposed to Bd had significantly lower survival rates compared with control juveniles, while adult frogs often cleared infection. Second, I conducted experiments to determine whether E. coqui can become infected with Bd indirectly from contact with zoospores shed onto vegetation by an infected frog and from direct exposure to an infected frog. Both types of transmission were observed, making this the first demonstration that amphibians can become infected indirectly in non-aquatic habitats. Third, I tested the hypothesis that artificially-maintained cultures of Bd attenuate in pathogenicity, an effect known for other fungal pathogens. Comparing two cultures of the same Bd strain with different passage histories revealed reduced zoospore production and disease-induced mortality rates for a susceptible frog species (Atelopus zeteki) but not for the less-susceptible E. coqui. Finally, I used a mathematical model to project the population-level impacts of chytridiomycosis on E. coqui. Model analysis showed that indirect transmission, combined with either a high rate of zoospore production or low rate of zoospore mortality, is required for Bd to drive E. coqui populations below an extinction threshold. High rates of transmission plus frequent re-infection could lead to poor recruitment of infected juveniles and population decline. My research adds further insight into how emerging infectious disease is contributing to the loss of amphibian biodiversity. / Dissertation/Thesis / Ph.D. Biology 2013
|
5 |
Invertebrate Community Changes Along Coqui Invasion Fronts in HawaiiChoi, Ryan T 01 May 2011 (has links)
The Puerto Rican coqui frog, Eleutherodactylus coqui, was introduced to Hawaii in the late 1980s via the commercial horticulture trade. Previous research has shown that coquis can change invertebrate communities, but these studies were conducted at small scales using controlled, manipulative experiments. The objective of this research was to determine whether coqui invasions change invertebrate communities at the landscape scale across the island of Hawaii. At each invasion front, we measured environmental variability on either side of the front and removed sites that were too variable across the front to ensure that the impacts we measured were the result of the invasion. After doing this, there remained 15 sites for which we compared invertebrate communities in 30 m x 30 m plots situated on either side of coqui invasion fronts. In each plot, we collected invertebrate samples from three invertebrate communities, the leaf litter, foliage, and flying invertebrate communities. Multivariate analyses show that coqui frogs change leaf litter communities, by reducing microbivore and herbivore abundances. Coqui also change flying community composition, but have no measurable effect on foliage communities. Across sites, we found that coquis reduced the number of leaf litter invertebrates by 27%, and specifically abundant Acari by 36%. We also found that coquis increased the abundance of flying Diptera by 19% across sites. We suggest that the leaf litter community is altered through direct coqui predation and that Diptera increase because of increased frog carcasses and excrement in invaded plots. Results support previous studies conducted in more controlled settings, but add to our understanding of the invasion by demonstrating that coqui effects on invertebrate communities are measurable at the landscape scale.
|
6 |
A Coupled Human and Natural Systems Approach to Understanding an Invasive Frog, Eleutherodactylus Coqui, in HawaiiKalnicky, Emily A. 01 May 2012 (has links)
Human activities worldwide have altered nature in ways that create new combinations of species and environmental processes. To understand so-called "novel ecosystems" it is important to consider both the natural and the societal factors that shape them, and how those factors are interconnected or "coupled." We used such an approach to explore options for managing a non-native invasive frog, the coqui, which has become established on the island of Hawaii and threatens to spread to other parts of the state.
The nighttime calls of the coqui create a nuisance for property owners when populations become dense enough, as often occurs in Hawaii where the frogs have no natural enemies. Humans have tried various ways to eliminate coqui on the island of Hawaii with little success. Therefore we studied how property owners cope with their presence, both through management practices and psychological coping strategies. We also examined results of those efforts. People whose properties had more frogs were more likely to take action to reduce their numbers, but also attitudes toward the coqui were less negative when people had grown used to having to share their properties with the frogs. For those who cannot cope psychologically, we found it would be possible to manage properties to reduce densities but only when leaf litter and low shrubs were completely removed from near a home. Information campaigns about managing coqui should be different when targeting people that already host frogs and those that do not.
|
Page generated in 0.0703 seconds