Spelling suggestions: "subject:"email span"" "subject:"email spa""
1 |
Methods for Analyzing the Evolution of Email SpamNachenahalli Bhuthegowda, Bharath Kumar 11 January 2019 (has links)
Email spam has steadily grown and has become a major problem for users, email service providers, and many other organizations. Many adversarial methods have been proposed to combat spam and various studies have been made on the evolution of email spam, by finding evolution patterns and trends based on historical spam data and by incorporating spam filters. In this thesis, we try to understand the evolution of email spam and how we can build better classifiers that will remain effective against adaptive adversaries like spammers. We compare various methods for analyzing the evolution of spam emails by incorporating spam filters along with a spam dataset. We explore the trends based on the weights of the features learned by the classifiers and the accuracies of the classifiers trained and tested in different settings. We also evaluate the effectiveness of the classifier trained in adversarial settings on synthetic data.
|
2 |
Detecting spam relays by SMTP traffic characteristics using an autonomous detection systemWu, Hao January 2011 (has links)
Spam emails are flooding the Internet. Research to prevent spam is an ongoing concern. SMTP traffic was collected from different sources in real networks and analyzed to determine the difference regarding SMTP traffic characteristics of legitimate email clients, legitimate email servers and spam relays. It is found that SMTP traffic from legitimate sites and non-legitimate sites are different and could be distinguished from each other. Some methods, which are based on analyzing SMTP traffic characteristics, were purposed to identify spam relays in the network in this thesis. An autonomous combination system, in which machine learning technologies were employed, was developed to identify spam relays in this thesis. This system identifies spam relays in real time before spam emails get to an end user by using SMTP traffic characteristics never involving email real content. A series of tests were conducted to evaluate the performance of this system. And results show that the system can identify spam relays with a high spam relay detection rate and an acceptable ratio of false positive errors.
|
3 |
Automatic identification and removal of low quality online informationWebb, Steve 17 November 2008 (has links)
The advent of the Internet has generated a proliferation of online information-rich environments, which provide information consumers with an unprecedented amount of freely available information. However, the openness of these environments has also made them vulnerable to a new class of attacks called Denial of Information (DoI) attacks. Attackers launch these attacks by deliberately inserting low quality information into information-rich environments to promote that information or to deny access to high quality information. These attacks directly threaten the usefulness and dependability of online information-rich environments, and as a result, an important research question is how to automatically identify and remove this low quality information from these environments. The first contribution of this thesis research is a set of techniques for automatically recognizing and countering various forms of DoI attacks in email systems. We develop a new DoI attack based on camouflaged messages, and we show that spam producers and information consumers are entrenched in a spam arms race. To break free of this arms race, we propose two solutions. One solution involves refining the statistical learning process by associating disproportionate weights to spam and legitimate features, and the other solution leverages the existence of non-textual email features (e.g., URLs) to make the classification process more resilient against attacks. The second contribution of this thesis is a framework for collecting, analyzing, and classifying examples of DoI attacks in the World Wide Web. We propose a fully automatic Web spam collection technique and use it to create the Webb Spam Corpus -- a first-of-its-kind, large-scale, and publicly available Web spam data set. Then, we perform the first large-scale characterization of Web spam using content and HTTP session analysis. Next, we present a lightweight, predictive approach to Web spam classification that relies exclusively on HTTP session information. The final contribution of this thesis research is a collection of techniques that detect and help prevent DoI attacks within social environments. First, we provide detailed descriptions for each of these attacks. Then, we propose a novel technique for capturing examples of social spam, and we use our collected data to perform the first characterization of social spammers and their behaviors.
|
Page generated in 0.0592 seconds