Spelling suggestions: "subject:"embarrassingly parallel"" "subject:"embarassingly parallel""
1 |
Distributed Feature Selection in Large n and Large p Regression ProblemsWang, Xiangyu January 2016 (has links)
<p>Fitting statistical models is computationally challenging when the sample size or the dimension of the dataset is huge. An attractive approach for down-scaling the problem size is to first partition the dataset into subsets and then fit using distributed algorithms. The dataset can be partitioned either horizontally (in the sample space) or vertically (in the feature space), and the challenge arise in defining an algorithm with low communication, theoretical guarantees and excellent practical performance in general settings. For sample space partitioning, I propose a MEdian Selection Subset AGgregation Estimator ({\em message}) algorithm for solving these issues. The algorithm applies feature selection in parallel for each subset using regularized regression or Bayesian variable selection method, calculates the `median' feature inclusion index, estimates coefficients for the selected features in parallel for each subset, and then averages these estimates. The algorithm is simple, involves very minimal communication, scales efficiently in sample size, and has theoretical guarantees. I provide extensive experiments to show excellent performance in feature selection, estimation, prediction, and computation time relative to usual competitors.</p><p>While sample space partitioning is useful in handling datasets with large sample size, feature space partitioning is more effective when the data dimension is high. Existing methods for partitioning features, however, are either vulnerable to high correlations or inefficient in reducing the model dimension. In the thesis, I propose a new embarrassingly parallel framework named {\em DECO} for distributed variable selection and parameter estimation. In {\em DECO}, variables are first partitioned and allocated to m distributed workers. The decorrelated subset data within each worker are then fitted via any algorithm designed for high-dimensional problems. We show that by incorporating the decorrelation step, DECO can achieve consistent variable selection and parameter estimation on each subset with (almost) no assumptions. In addition, the convergence rate is nearly minimax optimal for both sparse and weakly sparse models and does NOT depend on the partition number m. Extensive numerical experiments are provided to illustrate the performance of the new framework.</p><p>For datasets with both large sample sizes and high dimensionality, I propose a new "divided-and-conquer" framework {\em DEME} (DECO-message) by leveraging both the {\em DECO} and the {\em message} algorithm. The new framework first partitions the dataset in the sample space into row cubes using {\em message} and then partition the feature space of the cubes using {\em DECO}. This procedure is equivalent to partitioning the original data matrix into multiple small blocks, each with a feasible size that can be stored and fitted in a computer in parallel. The results are then synthezied via the {\em DECO} and {\em message} algorithm in a reverse order to produce the final output. The whole framework is extremely scalable.</p> / Dissertation
|
2 |
Parallélisme en programmation par contraintes / Parallelism in constraint programmingRezgui, Mohamed 08 July 2015 (has links)
Nous étudions la parallélisation de la procédure de recherche de solution d’un problème en Programmation Par Contraintes (PPC). Après une étude de l’état de l’art, nous présentons une nouvelle méthode, nommée Embarrassingly Parallel Search (EPS). Cette méthode est basée sur la décomposition d’un problème en un très grand nombre de sous-problèmes disjoints qui sont ensuite résolus en parallèle par des unités de calcul avec très peu, voire aucune communication. Le principe d’EPS est d’arriver statistiquement à un équilibrage des temps de résolution de chaque unité de calcul afin d’obtenir une bonne répartition de la charge de travail. EPS s’appuie sur la propriété suivante : la somme des temps de résolution de chacun des sous-problèmes est comparable au temps de résolution du problème en entier. Cette propriété est vérifiée en PPC, ce qui nous permet de disposer d’une méthode simple et efficace en pratique. Dans nos expérimentations, nous nous intéressons à la recherche de toutes les solutions d’un problème en PPC, à prouver qu’un problème n’a pas de solution et à la recherche d’une solution optimale d’un problème d’optimisation. Les résultats montrent que la décomposition doit générer au moins 30 sous-problèmes par unité de calcul pour obtenir des charges de travail par unité de calcul équivalentes. Nous évaluons notre approche sur différentes architectures (machine multi-coeurs, centre de calcul et cloud computing) et montrons qu’elle obtient un gain pratiquement linéaire en fonction du nombre d’unités de calcul. Une comparaison avec les méthodes actuelles telles que le work stealing ou le portfolio montre qu’EPS obtient de meilleurs résultats. / We study the search procedure parallelization in Constraint Programming (CP). After giving an overview on various existing methods of the state-of-the-art, we present a new method, named Embarrassinqly Parallel Search (EPS). This method is based on the decomposition of a problem into many disjoint subproblems which are then solved in parallel by computing units with little or without communication. The principle of EPS is to have a resolution times balancing for each computing unit in a statistical sense to obtain a goodDépôt de thèse – Données complémentaireswell-balanced workload. We assume that the amount of resolution times of all subproblems is comparable to the resolution time of the entire problem. This property is checked with CP and allows us to have a simple and efficient method in practice. In our experiments, we are interested in enumerating all solutions of a problem, and proving that a problem has no solution and finding an optimal solution of an optimization problem. We observe that the decomposition has to generate at least 30 subproblems per computing unit to get equivalent workloads per computing unit. Then, we evaluate our approach on different architectures (multicore machine, cluster and cloud computing) and we observe a substantially linear speedup. A comparison with current methods such as work stealing or portfolio shows that EPS gets better results.
|
Page generated in 0.0873 seconds