• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 77
  • 22
  • 17
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 278
  • 100
  • 58
  • 40
  • 40
  • 29
  • 25
  • 25
  • 24
  • 24
  • 21
  • 20
  • 19
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The defective embryo and meristems gene and its use in transposon tagging in tomato /

Reyes, Melquiades Emmanuel Cecilio. January 2001 (has links) (PDF)
Thesis (Ph. D.)--University of Queensland, 2002. / Includes bibliographical references.
32

Antibodies to secretory acetylcholinesterase : their possible role in the prenatal diagnosis of neural tube defects

Gardner, Patricia Emma January 1990 (has links)
No description available.
33

Post-Transfer Outcomes in Cultured Bovine Embryos Supplemented with Epidermal Growth Factor, Fibroblast Growth Factor 2, and Insulin-Like Growth Factor 1

Vailes, McCauley T. 16 June 2017 (has links)
The high incidence of pregnancy loss is a major issue facing the cattle industry. Use of in vitro fertilized (IVF) bovine embryos has become increasingly popular to help alleviate several of these reproductive issues and provide a means to enhance genetic gain for production traits. An uterine paracrine factor cocktail containing epidermal growth factor (EGF), fibroblast growth factor 2 (FGF2), and insulin-like growth factor 1 (IGF1) (collectively termed EFI) was recently identified as a means for improving in vitro derived bovine embryo development and trophectoderm cell numbers. The objectives of this work were to determine if EFI treatment during in vitro bovine embryo culture improves transferable embryo quality and post-transfer placental and fetal development. For each replicate (3 total), slaughterhouse-derived bovine oocytes were matured and fertilized in vitro. At day 4 post-fertilization, ≥8 cell embryos were harvested, pooled, and exposed to either the EFI treatment (10ng/ml EGF, 10ng/ml FGF2, 50ng/ml IGF1) or carrier only (1% Bovine Serum Albumin). At day 7, individual embryos were transferred to estrous synchronized beef cattle. Artificial insemination (AI) was completed on a subset of cows. The EFI treatment increased (P<0.05) the percentage of transferable embryos. Pregnancy rate at day 28 post-estrus was similar among treatments. Circulating concentrations of pregnancy-associated glycoproteins (PAGs) were determined from plasma harvested at day 28, 42 and 56. Transrectal ultrasonography was used to measure fetal crown-rump length (CRL) at day 42 and 56 and to determine fetal sex at day 60. There were no main effect differences observed across days for PAG concentration. Fetus sex by ET/AI group interactions were absent at day 28 but existed at days 42 and 56 (P<0.05). At both days, this interaction reflected fetus sex-dependent changes within the ET control group, where PAG concentrations were greater (P<0.05) in male fetuses than female fetuses. No CRL differences or interactions existed among fetal sex and pregnancy group. In summary, addition of the EFI cocktail during bovine embryo culture improved the quality of transferable embryos, but did not affect placental function or embryonic/fetal development. Increasing the numbers of transferable embryos is of value given the cost of in vitro embryo production, but no apparent increases in embryo or placental competency were detected. The EFI treatment increased (P<0.05) the percentage of transferable embryos. / Master of Science / The high incidence of pregnancy loss is a major issue facing the cattle industry. Use of in vitro fertilized (IVF) bovine embryos has become increasingly popular to help alleviate several of these reproductive issues and provide a means to enhance genetic gain for production traits. An uterine paracrine factor cocktail containing epidermal growth factor (EGF), fibroblast growth factor 2 (FGF2), and insulin-like growth factor 1 (IGF1) (collectively termed EFI) was recently identified as a means for improving in vitro derived bovine embryo development and trophectoderm cell numbers. The objectives of this work were to determine if EFI treatment during in vitro bovine embryo culture improves transferable embryo quality and post-transfer placental and fetal development. For each replicate, slaughterhouse-derived bovine oocytes were matured and fertilized in vitro and at day 4 post-fertilization, embryos were exposed to either the EFI treatment (10ng/ml EGF, 10ng/ml FGF2, 50ng/ml IGF1) or carrier only (1% Bovine Serum Albumin). Artificial insemination (AI) was completed on a subset of cows and the remaining cattle receive embryos at day 7. The EFI treatment increased (P<0.05) the percentage of transferable embryos. Pregnancy rate at day 28 post-estrus was similar among treatments. Circulating concentrations of pregnancy-associated glycoproteins (PAGs) were determined from plasma harvested at day 28, 42 and 56. Transrectal ultrasonography was used to measure fetal crown-rump length (CRL) at day 42 and 56 and to determine fetal sex at day 60. There were no main effect differences observed across days for PAG concentration. Fetus sex by ET/AI group interactions were absent at day 28 but existed at days 42 and 56 (P<0.05). At both days, this interaction reflected fetus sex-dependent changes within the ET control group, where PAG concentrations were greater (P<0.05) in male fetuses than female fetuses. No CRL differences or interactions existed among fetal sex and pregnancy group. In summary, addition of the EFI cocktail during bovine embryo culture improved the quality of transferable embryos, but did not affect placental function or embryonic/fetal development. Increasing the numbers of transferable embryos is of value given the cost of in vitro embryo production, but no apparent increases in embryo or placental competency were detected. The EFI treatment increased (P<0.05) the percentage of transferable embryos.
34

Visualizing zinc dynamics in cell division and developing zebrafish

Bourassa, Daisy M. 27 May 2016 (has links)
Despite the importance of zinc in cell proliferation and development, mechanisms of zinc redistribution during these processes remain largely elusive. Given the limited external supply of nutrients during embryogenesis, developing organs most likely redistribute zinc from neighboring cells to satisfy their increased demand, thus raising the intriguing and fundamental question of how the limited supply of zinc in a fertilized egg is redistributed in the course of embryonic development. To systematically explore this question, we employed both cell culture and zebrafish as model systems in combination with a Zn(II)-selective fluorescent probe and synchrotron X-ray fluorescence (SXRF) microtomography studies. Using the Zn(II)-selective emission ratiometric fluorescent probe designed in our lab, we followed the redistribution dynamics of labile Zn(II) pools in a zebrafish embryo during the first 24 hours post fertilization. Furthermore, SXRF microtomography studies were used to visualize the 3D distribution of total zinc in fixed zebrafish samples. From this method we successfully reconstructed a 3D elemental distribution map at 5 μm resolution. The volumetric map revealed a distinct zinc distribution that could be correlated with characteristic anatomical features at this stage of embryonic development. Together these powerful techniques allow us to study both labile zinc in live samples and total zinc content in fixed samples in order to achieve a more detailed understanding of the zinc redistribution dynamics during embryogenesis.
35

Growth factor production in pregnant equids

Lennard, Simon N. January 1994 (has links)
No description available.
36

XKrk1, a c-kit-related receptor tyrosine kinase expressed in Xenopus embryos

Baker, Clare V. H. January 1994 (has links)
No description available.
37

Characterisation of the primitive streak promoter of the murine Brachyury gene

Taylor, Hazel January 1996 (has links)
No description available.
38

The regulation of the cell division cycle by forkhead proteins in Saccharomyces cerevisiae

Pic-Taylor, Aline January 2001 (has links)
No description available.
39

Applications of tissue culture to the breeding of roses with resistance to Diplocarpon rosae

Sarasan, Viswambharan January 1998 (has links)
No description available.
40

Understanding epidermal cell fate specification during plant embryogenesis

San-Bento, Rita January 2013 (has links)
Shoot epidermal identity is critical for plant survival, growth, and interaction with the environment. Epidermal identity is specified during very early embryogenesis, and maintained in the outermost cells of the plant throughout the entire life cycle. In this work I aimed to generate a model for the establishment of basal epidermal cell fate during embryogenesis based on the analysis of both known and novel regulators. Loss of function of two HD-ZIP IV transcription factors, ATML1 and PDF2 had previously been shown to lead to embryo lethality due to loss of epidermal specification. In this study I uncover dosage dependency of ATML1 and PDF2 function during embryogenesis. By expressing functional ATML1 and PDF2 fusion proteins specifically in the epidermis, I developed a novel tool allowing demonstration of homo- and heterodimerization of these two transcription factors in planta. Using genetic and proteomic analysis I provide evidence that other HD-ZIP IV proteins are involved in epidermal specification together with ATML1 and PDF2, suggesting the presence of multiple regulatory protein complexes. Based on previous published and unpublished work, I tested the hypothesis that ATML1 and PDF2 form part of a regulatory feedback loop necessary for maintenance of epidermal identity, and involving cell-cell signalling mediated by the receptor kinase ACR4. Using a genetic approach I confirm that ATML1 and PDF2 likely act together with ACR4 in the specification of embryonic epidermal identity. I show that ATML1 and PDF2 negatively regulate both ACR4, and their own expression, most likely by binding to L1 box motifs. In contrast, I provide evidence that ACR4-mediated signalling participates in maintaining expression levels of ATML1 and PDF2. Mathematical modelling of the properties of the feedback loop supported by my results, suggests that it is capable of maintaining a robust epidermal cell fate, and predicts possible changes in network interactions during the process of epidermal cell fate specification. Finally I used a combination of bioinformatics approaches to integrate in silico and experimental data with the aim of discovering potential novel epidermal regulators and targets of epidermal fate specifying pathways. This work highlighted potential roles for WOX-family transcription factors in epidermal fate specification, which were further analysed genetically. In addition, bioinformatics analysis pinpointed an intriguing overlap between the targets of epidermal specification pathways and targets of abiotic stresses signalling.

Page generated in 0.06 seconds