Spelling suggestions: "subject:"embryonic tem well"" "subject:"embryonic tem cell""
1 |
Role of Grb2 in growth and differentiation of embryonic stem cellsMurray, Helen January 2011 (has links)
Embryonic stem (ES) cells are derived from the inner cell mass of the blastocyst stage embryo. They exhibit unlimited proliferation in culture and have the ability to differentiate into all three germ layers of the developing organism, a property defined as pluripotency. Previously it was reported that growth factor-bound protein 2 (Grb2) is required for differentiation of the epiblast, the embryonic tissue that harbours the pluripotent founder cells of the foetus. GRB2 is an adapter protein involved in the activation of the mitogen-activated protein kinase (MAPK) pathway in response to extracellular signals. It has also been implicated in the activation of the phosphoinositol-3-kinase (PI3K) pathway in response to fibroblast growth factor (FGF) signaling. The work presented in this thesis examines the role of Grb2 in ES cells and describes previously unreported contributions of this adaptor protein in regulating ES cell growth and differentiation. It has been previously been shown by others that Grb2 deficient (Grb2-/-) cells grow relatively normally in ES growth medium containing serum. However, in serum free conditions (N2B27 medium) in this project, proliferation of Grb2-/- cells is reduced compared with wild type and “restored” Grb2-/- cells stably expressing a Grb2 cDNA mini gene. Under serum free conditions, Grb2-/- cells grow in tight, refractive colonies. Nanog expression was uniformly upregulated, in contrast to the heterogeneous pattern reported in serum-based medium. Colony expansion on the substratum appears to be compromised, although there is no apparent defect in the initial attachment of Grb2-/- cells. Cell cycle analysis indicates that the slower growth of Grb2-/- cells in serum free medium could be due to lengthening of the G1 phase of the ES cell cycle. In an attempt to identify the signalling deficiency responsible for the growth defect of Grb2-/- cells, MAPK activation was restored by two methods, PMA a ligand that bypasses the requirement for Grb2, and Raf-ER, a conditionally regulated component of the MAPK pathway that acts downstream of Grb2 in the MAPK pathway. Although both approaches increased MAPK signalling they were unable to rescue the growth defect. This suggests that MAPK is not required or alone is not sufficient. Inhibition of Glycogen synthase kinase 3 β (GSK3 β ) is known to augment growth of ES cells under MAPK inhibition. Surprisingly, GSK3 β inhibition did not enhance Grb2-/- cell growth. Under GSK3 β inhibition, Grb2-/- ES cells fail to thrive. It is hypothesised that under these conditions cells undergo hyper-self-renewal at the cost of growth. Grb2-/- ES cells are reported to exhibit limited differentiation potential. To examine the potency of Grb2-/- cells, these cells were subjected to embryoid body (EB) and monolayer differentiation. Analysis of EBs showed a loss of Gata4, Gata6 and endoderm marker gene expression. However, markers of ectoderm (Sox1, Pax6, MAP2), the late epiblast/nascent mesoderm (Brachyury) and markers associated with gastrulation (Twist and Snail) were expressed. Outgrowths of morphologically and immunohistochemically identifiable neuronal cells confirmed differentiation of ectodermal cell types, indicating Grb2 is not required for neuronal differentiation. However, beating cardiomyocytes could not be identified in Grb2-/- EBs, though readily found in restored Grb2-/- cells expressing the Grb2 cDNA. This suggests that there is an essential role for Grb2 in the mesoderm/cardiomyocyte differentiation pathway. This may be due to a defect in GATA factor expression since these factors are essential for cardiogenesis. In serum-free monolayer differentiation, Grb2-/- cells formed neuronal cells. Additional inhibition of the MAPK pathway using a small chemical inhibitor failed to prevent this differentiation. However, biochemical analysis of the cells indicates that this occurs when ERK activation is very low, indicating differentiation was not MAPK-independent. Grb2 mediates FGF-MAPK induced exit from the naïve ground state. These data suggest a Grb2-independent pathway can also facilitate this transition. Grb2 is dispensable for differentiation in to some lineages. However as differentiation of Grb2-/- ES cells is restricted, this indicates Grb2 is required for true pluripotency.
|
2 |
The regulation of mouse embryonic stem cell differentiation by Nrf2Wongpaiboonwattana, Wikrom January 2017 (has links)
Embryonic stem (ES) cell maintenance and differentiation are dynamic processes controlled by various intrinsic and extrinsic factors. Identifying these factors will enhance the understanding about developmental process and improve the application of stem cells in clinic. Previous studies highlight a shift between non-oxidative and oxidative energy metabolism to play roles during differentiation. Oxidative metabolism is a major source of reactive oxygen species (ROS) which is regulated by a cytoprotective transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2). Therefore, this study investigate relationship between metabolism, ROS, and Nrf2 during mouse ES cell differentiation. In vitro models representing early lineage differentiation were used. By measuring metabolic profiles, ROS, and Nrf2 levels from the models, Nrf2 was found related to pluripotency and ROS. However, relationship among metabolism and Nrf2 or ROS could not be detected. Gain- and loss-of-function experiments by pharmacological activator, short hairpin RNA knockdown, and CRISPR-Cas9 genome editing showed that Nrf2 could promote pluripotency and inhibit differentiation, especially during early differentiation toward neural lineage. This study suggested a new player in transcription control that governs pluripotency and differentiation.
|
3 |
Germ lineage specification from a pluripotent primitive ectoderm-like substrate: a role for cell-cell contacts.Hughes, James Nicholas January 2008 (has links)
During mammalian development a small number of pluripotent cells proliferate and differentiate to give rise to all the mature cell types of the organism. Among the earliest differentiation events is the process of gastrulation, in which pluripotent primitive ectoderm cells form the three germ lineages, mesoderm, ectoderm and endoderm under the control of complex signalling and environmental cues. This process can be modelled using embryonic stem cells, which have proven to respond to embryologically relevant signals during in vitro differentiation and promise to uncover additional insights into the process of germ lineage specification. This thesis describes the differentiation of mouse ES cells to committed cell types via a second intermediate population of pluripotent cells termed Early Primitive Ectoderm-Like (EPL) cells. The similarity of EPL cells to primitive ectoderm and the rapid acquisition of lineage specific markers and loss of pluripotent characteristics upon differentiation of EPL cells suggest they are an excellent model for the cells in the embryo that undergo germ lineage commitment. EPL cells can be differentiated as EPLEBs, which are highly enriched in mesodermal cell types and contain essentially no ectodermal derivatives and no visceral endoderm. Here it is shown that EPLEBs can be generated from EPL cells grown either adherently or in suspension culture provided the cells are reduced to a single cell suspension before reaggregation as EPLEBs. Since EPLEBs are a rich source of mesoderm and contain less non-mesodermal cell types than traditional ESEBs, they were assayed for definitive blood formation, however none was detected. Alternately, EPL cells can be differentiated in the presence of MEDII in aggregates termed EBMs, which are restricted to ectodermal cell fates. Here it is demonstrated that the switch from mesodermal to ectodermal differentiation observed in ELPEBs and EBMs relies on two variables; a mesoderm suppressing activity within MEDII and the pro-mesodermal activity of cell dissociation as undertaken during EPLEB formation. Evidence has been presented that interventions that modulate the epithelial identity of EPL cells are capable of influencing subsequent differentiation such that protection of the epithelial cell state favours ectoderm while disruption favours mesoderm. Staurosporine (SSP) is a kinase inhibitor that has been shown to induce an epithelial to mesenchymal transition in chick neural tube. Here it was added to EPL cells with the result that mesodermal differentiation was enhanced at the expense of ectoderm. DAPT is a potent inhibitor of ƴ-secretase, which cleaves a number of protein targets including the adherens junction component E-cadherin. Addition of DAPT to differentiating EPL cells has the opposite effect to SSP, with an increase in ectodermal differentiation at the expense of medoderm. It is proposed that DAPT is acting by preventing E-cadherin cleavage and thus stabilising the epithelial state. Modulation of epithelial contacts between pluripotent cells represents a novel way to control lineage induction and as such the incorporation of these findings into methodologies for directed differentiation in defined culture conditions is likely to provide improved outcomes in the production of desired cell types. / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008
|
4 |
Assessing the Impact of Religious Beliefs on Public Perceptions and U.S. Government Policies: The Case of Embryonic Stem Cell ResearchRobinson, Tomeka Michelle 2009 December 1900 (has links)
This dissertation presents three separate studies designed to provide structure and evidence-based insight into the impact of religious beliefs on public perceptions and U.S. government policies regarding embryonic stem cell research. First, a systematic literature review of nine (n=9) empirical studies that examined individuals' religious beliefs and perceptions/utilization of genetic technologies/services will be presented. Based on the finding from the review, there was an equal balance between studies that found that religion was a factor positively affecting intention to submit to genetic testing and those that illustrated a negative association.
Secondly, a qualitative examination of college students' from various racial/ethnic and religious backgrounds exploring the definition, interpretation, and conceptualization of the influence of religious beliefs on perceptions regarding embryonic stem cell research will be offered. Employing an emergent design, the data collection process encompassed thirty-seven in-depth interviews. The majority of participants in this study believed that ESCR should be conducted and federally funding in the United States, regardless of their religious beliefs.
Lastly, the findings from the analysis of congressional records from the U.S. Congress for areas of convergence and divergence between discussions, voting, and legislation regarding stem cell research with the official stances of the major religious groups in the United States accessing the influence of religious rhetoric on political discourse regarding embryonic stem cell research will be discussed. Findings from this study suggest that religious rhetoric has a substantial influence on political rhetoric regarding ESCR.
|
5 |
Optimal Population of Embryonic Stem Cells in "Hanging Drop" Culture for in-vitro Differentiation to Cardiac MyocytesMIWA, Keiko, LEE, Jong-Kook, HIDAKA, Kyoko, SHI, Rong-qian, MORISAKI, Takayuki, KODAMA, Itsuo 12 1900 (has links)
国立情報学研究所で電子化したコンテンツを使用している。
|
6 |
Mining large collections of gene expression data to elucidate transcriptional regulation of biological processesCurry, Edward William James January 2011 (has links)
A vast amount of gene expression data is available to biological researchers. As of October 2010, the GEO database has 45,777 chips of publicly available gene expression pro ling data from the Affymetrix (HGU133v2) GeneChip platform, representing 2.5 billion numerical measurements. Given this wealth of data, `meta-analysis' methods allowing inferences to be made from combinations of samples from different experiments are critically important. This thesis explores the application of localized pattern-mining approaches, as exemplified by biclustering, for large-scale gene expression analysis. Biclustering methods are particularly attractive for the analysis of large compendia of gene expression data as they allow the extraction of relationships that occur only across subsets of genes and samples. Standard correlation methods, however, assume a single correlation relationship between two genes occurs across all samples in the data. There are a number of existing biclustering methods, but as these did not prove suitable for large scale analysis, a novel method named `IslandCluster' was developed. This method provided a framework for investigating the results of different approaches to biclustering meta-analysis. The biclustering methods used in this work involve preprocessing of gene expression data into a unified scale in order to assess the significance of expression patterns. A novel discretisation approach is shown to identify distinct classes of genes' expression values more appropriately than approaches reported in the literature. A Gene Expression State Transformation (`GESTr') introduced as the first reported modelling of the biological state of expression on a unified scale and is shown to facilitate effective meta-analysis. Localised co-dependency analysis is introduced, a paradigm for identifying transcriptional relationships from gene expression data. Tools implementing this analysis were developed and used to analyse specificity of transcriptional relationships, to distinguish related subsets within a set of transcription factor (TF) targets and to tease apart combinatorial regulation of a set of targets by multiple TFs. The state of pluripotency, from which a mammalian cell has the potential to differentiate into any cell from any of the three adult germ layers, is maintained by forced expression of Nanog and may be induced from a non-pluripotent state by the expression of Oct4, Sox2, Klf4 and cMyc. Analysis of cMyc regulatory targets shed light on a recent proposition that cMyc induces an `embryonic stem cell like' transcriptional signature outside embryonic stem (ES) cells, revealing a cMyc-responsive subset of the signature and identifying ES cell expressed targets with evidence of broad cMyc-induction. Regulatory targets through which cMyc, Oct4, Sox2 and Nanog may maintain or induce pluripotency were identified, offering insight into transcriptional mechanisms involved in the control of pluripotency and demonstrating the utility of the novel analysis approaches presented in this work.
|
7 |
Embryonic Stem Cell Extracts Possess Immune Modulatory Properties That Prevent Dendritic Cell Maturation and T Cell ActivationMohib, Kanishka 26 April 2012 (has links)
Embryonic stem cells (ESC) possess immune privileged properties and have the capacity to modulate immune activation. ESCs can persist across allogeneic immunological barriers, prevent lymphocyte proliferation in mixed lymphocyte reaction (MLR) assays and can promote graft acceptance. However, clinical application of live ESC to treat immunological disorders is not feasible as live ESC can form teratoma in-vivo. In order to harness these properties of ESCs without adverse risk to patients, we hypothesized that ESC derived extracts may retain immune modulatory properties of whole cells and therefore could be used to abrogate allo-immune responses. We found addition of ESC-extracts from human lines H1 and H9, significantly prevented T cell proliferation in allogeneic MLRs. These results were confirmed using murine J1 ESC line. In-vitro studies showed human ESC EXT were able to modulate maturation of human monocyte derived dendritic cells (DC) by suppressing up-regulation of important co-stimulatory and maturation markers CD80, HLA-DR and CD83. In addition, DCs educated in the presence of human ESC extracts significantly lost their ability to stimulate purified allogeneic T cells compared to control extract treated DCs. We also determined that ESC extracts have an independent effect on T cells. ESC extracts prevented T cell proliferation in response to anti CD3/CD28 stimulation. In MLRs, ESC derived factors significantly down-regulated IL-2 and IFN-γ expression, while up-regulating TGF-β and Foxp3 expression. Furthermore, lymphocytes and purified T cells activated with anti-CD3/CD28, ConA and PMA proliferated poorly in the presence of ESC derived factors, while proliferation in response to ionomycin was not affected. Western blot analysis indicated that ESC derived factors prevented PKC-θ phosphorylation without influencing total PKC-θ levels. Moreover, IκB-α degradation was abrogated, confirming absence of PKC-θ activity. Therefore, ESC extracts have potent immune suppressive properties and may have clinical applications in ameliorating transplant rejection and autoimmune conditions.
|
8 |
Crucial transcription factors in endoderm and embryonic gut development are expressed in gut-like structures from mouse ES cellsMatsuura, Rie, Kogo, Hiroshi, Ogaeri, Takunori, Miwa, Takashi, Kuwahara, Masaki, Kanai, Yoshiakira, Nakagawa, Takumi, Kuroiwa, Atsushi, Fujimoto, Toyoshi, Torihashi, Shigeko, 鳥橋, 茂子 03 1900 (has links)
No description available.
|
9 |
The roles of androgen receptor aggregates in embryonic stem cell differentiationHsiao, Po-Lun 15 February 2012 (has links)
Androgen receptor (AR) is a member of the steroid hormone receptor family of molecules, and expansion of a CAG repeat encoding polyglutamine (poly-Q) in AR gene are associated with a progressive neuromuscular disease known as spinal bulbar muscular atrophy (SBMA) or Kennedy disease. The hallmark of SBMA diseases is formation of juxtanuclear AR inclusions that have been termed ¡¥AR aggregates¡¦.Previous studies showed that transgenic mice overexpressing wild-type AR exclusively in the skeletal muscle fibers display similar abnormalities to those observed in models of SBMA disease.
To elucidate the mechanisms underlying toxicity conferred by wild-type protein aggregation within normal cells, a mouse embryonic stem cell (ESC) model with non-genetic modified settings in AR overexpression was used to display the common features of polyglutamine disease in this experiment. It was found that wild-type AR proteins are highly expressed and form nuclear aggregate inclusions in response to androgen treatment in ES cells, the formation of AR aggregates inhibit the differentiation of embryonic bodys and enhanced caspase-3 activity in androgens -induced apoptosis.
In addition, it was also investigated that relation between chaperones¡BAR and the endoplasmic reticulum (ER) stress-induced pathways in ES cells in this study, and it was found that chaperones could colocalize with AR aggregates, these findings may help us to better understand the roles of the chaperones on AR aggregates.
|
10 |
Transcriptional Network Analysis During Early Differentiation Reveals a Role for Polycomb-like 2 in Mouse Embryonic Stem Cell CommitmentWalker, Emily 11 January 2012 (has links)
We used mouse embryonic stem cells (ESCs) as a model to study the mechanisms that regulate stem cell fate. Using gene expression analysis during a time course of differentiation, we identified 281 candidate regulators of ESC fate. To integrate these candidate regulators into the known ESC transcriptional network, we incorporated promoter occupancy data for OCT4, NANOG and SOX2. We used shRNA knockdown studies followed by a high-content fluorescence imaging assay to test the requirement of our predicted regulators in maintaining self-renewal. We further integrated promoter occupancy data for Polycomb group (PcG) proteins, EED and PHC1 to identify 43 transcriptional networks in which we predict that OCT4 and NANOG co-operate with EED and PHC1 to influence the expression of multiple developmental regulators. Next, we turned our focus to the PcG protein PCL2 which we identified as being bound by both OCT4 and NANOG and down-regulated during differentiation. PcG proteins are conserved epigenetic transcriptional repressors that control numerous developmental gene expression programs. Using multiple biochemical strategies, we demonstrated that PCL2 associates with Polycomb Repressive Complex 2 (PRC2) in mouse ESCs, a complex that exerts its effect on gene expression through H3K27me3. Although PCL2 was not required for global histone methylation, it was required at specific target regions to maintain proper levels of H3K27me3. Knockdown of Pcl2 in ESCs resulted in heightened self-renewal characteristics and defects in differentiation. Integration of global gene expression and promoter occupancy analyses allowed us to identify PCL2 and PRC2 transcriptional targets and draft regulatory networks. We describe the role of PCL2 in both modulating transcription of ESC self-renewal genes in undifferentiated ESCs as well as developmental regulators during early commitment and differentiation.
|
Page generated in 0.0782 seconds