• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 31
  • 27
  • 25
  • 22
  • 9
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 420
  • 420
  • 420
  • 103
  • 81
  • 52
  • 48
  • 42
  • 42
  • 40
  • 40
  • 39
  • 39
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

The fate of undifferentiated murine embryonic stem cells in a mouse model with acute myocardial infarction

Wong, Chun-wai, January 2005 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2005. / Title proper from title frame. Also available in printed format.
132

The evolution and functional plasticity of vertebrate class V POU proteins in pluripotency

Sukparangsi, Woranop January 2015 (has links)
Oct4, a transcription factor belonging to the fifth class of POU proteins (POUV), plays essential roles in the maintenance of pluripotency, differentiation and the generation of induced pluripotent stem cells (iPSCs). Oct4 regulates two levels of pluripotency, which are distinguished by their gene expression profiles and epigenetic status, namely the naïve and primed state of pluripotency. Embryonic stem cells (ESCs) and embryonic germ cells (EGCs), which are isolated from inner cell mass and primordial germ cells in the embryo, respectively, are in vitro models in which the naïve state is propagated through self-renewal. Epiblast stem cells (EpiSCs) and traditional human ESCs have gene expression profiles that are closest to the post-implantation epiblast, which is closer to embryonic differentiation, and exhibit a primed state of pluripotency. As Oct4 is important for pluripotency in all these cell types, where it regulates different targets, it appears to have two distinct sets of functions, namely germ cell/naïve ESC-like activity and epiblast/primed pluripotency-like activity. Based on protein sequences and syntenic gene analysis, Oct4/POUV homologs of jawed vertebrates can be classified into two subfamilies: POU5F1 and POU5F3, which are thought to originate from a genome duplication event that occurred in a common ancestor. Most extant vertebrates have lost one of these paralogs, while a small fraction, including coelacanths, axolotls, turtles, and marsupials, retains both POUV forms. In my thesis, I investigated the gene duplication event that underlies divergence of POU5F1 and POU5F3 in both expression pattern and specialised function. In particular, I focused on species that have retained both genes and asked whether POUV functional divergence correlates with ancestral origin. To test the function of POU5F1 and POU5F3, I substituted endogenous mouse Oct4/Pou5f1 with different POUV proteins using a cell line in which endogenous Oct4 expression can be silenced with tetracycline (ZHBTc4). Results showed that POU5F1 proteins had a greater capacity to support naïve ESC pluripotency and self-renewal than POU5F3 proteins. Global transcriptome analysis of the POUV-rescued ESC lines revealed that coelacanth POU5F1 protein regulates gene expression in a similar manner to mouse Oct4, in that genes involved in stem cell maintenance, reproduction and development are upregulated in ESCs rescued by POU5F1, but not POU5F3. Coelacanth POU5F3 rescued lines, however, expressed genes involved in various cell differentiation programs, including cell adhesion (e.g. E-cadherin and N-cadherin). This suggests that POU5F3 plays a role in primed pluripotency, while POU5F1 regulates naïve pluripotency. However, there is one POU5F3 factor that rescues ESCs like Oct4, the Xenopus gene Xlpou91 (Pou5f3.1). In Xenopus, a further duplication of POU5F3 gene enabled specialization, and Xlpou91 is expressed specifically in the primordial germ cells. Xlpou25 (Pou5f3.2) exhibits epiblast-specific activities and lacks the capacity to maintain naïve ESC pluripotency, similar to other POU5F3 proteins. This functional distinction between the different Xenopus POUV paralogs enabled us to address how specific Oct4 functions (germ cell-like versus epiblast-like activity) are related to the induction of pluripotency. To address this question, mouse Oct4 was replaced by either Xlpou91 or Xlpou25 in murine cellular reprogramming using a Nanog-GFP reporter line to monitor iPSC generation. Results showed that Xlpou91 and mouse Oct4 were required at similar levels to reprogram somatic cells toward iPSCs and reprogrammed cells emerged with similar kinetics. Conversely, Xlpou25 was required at higher expression levels and the resulting iPSCs appeared at a later timepoint, while the pluripotent population in these cultures appeared to be less stable and more prone to differentiate. I found that this phenotype of enhanced differentiation in Xlpou25 reprogrammed cultures may be a product of a different set of immediate early genes induced at the first stages of differentiation. Global transcriptome analysis of the naïve ESC-like pluripotent subpopulation of these iPSC lines confirmed the capacity of all Xenopus POUVs to drive reprogramming towards the pluripotent state. However, the gene sets induced by both Xlpou91 and mouse Oct4, but not Xlpou25, were somewhat enriched for genes involved in reproduction, emphasizing the segregated role of Xlpou91 as a germ cell specific POUV protein. Lastly, I explored the evolutionary origin of these two POUV paralogs and attempted to identify a POUV-related gene in jawless vertebrate (cyclostomes). Based on in silico analysis of genomic and transcriptome databases, my collaborators and I were able to identify a single POUV gene in the Japanese/arctic lamprey, thus providing the first insight into the origin of gnathosome POUV genes.
133

Cellular therapeutic strategies for the treatment of Type 1 Diabetes Mellitus

Wu, Douglas Ching Gee January 2007 (has links)
No description available.
134

Glycosaminoglycan (GAG) functionalised electrospun poly(lactic-co-glycolic acid) (PLGA) scafffolds for the propagation and differentiation of mouse and human embryonic stem cells

Meade, Kate January 2010 (has links)
Embryonic stem (ES) cells have the capacity to form any cell type. However, their propagation and differentiation is limited by current two dimensional (2D) culture techniques which offer little flexibility in terms of surface structure and functionalisation with bioactive molecules. The aim of the current work was to produce a novel scaffold that could manipulate ES cell behaviour using both architectural and biological cues. Electrospinning is a flexible technique that creates nonwoven meshes that mimic the fibrous architecture of the ECM. Initial work focused on investigating the suitability of electrospun poly(lactic-co-glycolic acid) (PLGA) meshes for 2D and three dimensional (3D) culture of mouse ES cells, with the hypothesis that the fibrous architecture would assist in maintaining pluripotency. The study also sought to functionalise the scaffolds with biologically active molecules. Heparan sulphate proteoglycans (HSPGs) reside at the cell surface and within the ECM where they mediate growth factor binding, assist cell attachment and stabilise the ECM. Furthermore, ES cells modulate their own microenvironment by controlling the composition of heparan sulphate (HS), regulating the binding of growth factors such as fibroblast growth factor (FGF) family members. Therefore, we aimed to immobilise HS and heparin (a highly sulphated structural analogue of HS) on the fibre surface in a form that was freely accessible for protein/cell interactions and that retained its biological activity. Electrospinning parameters were optimised to produce microfibre electrospun meshes with an average fibre diameter of 570nm. Cell morphology, proliferation and pluripotency were monitored using an Oct4-GFP reporter cell line and results compared with flat spin coated films. To investigate the potential for 3D culture, spinning parameters were altered to increase fibre diameter to >3micro metre with infiltration assessed using pro-migratory E-cadherin-/- ES cells. Scaffolds were coated with plasma polymerised allylamine (ppAm) to enable non-covalent immobilisation of HS/heparin. Ligand binding assays with the link module of TSG-6 and anti-heparin/HS antibodies were used to probe HS/heparin presentation on the fibre surface. The biological activity of the immobilised HS/heparin was analysed by testing the ability of coated scaffolds to rescue the neural differentiation capacity HS deficient EXT1-/- ES cells. Finally, human ES cells were cultured on the surface of ppAm scaffolds +/- HS in both unconditioned and mouse embryonic fibroblast (MEF) conditioned media for 5 days. Both microfibre meshes and flat spin coated films supported the attachment, growth and pluripotency of mouse ES cells. Cells adopted distinct morphologies, with mouse ES cells aggregating in rounded colonies on microfibre scaffolds and demonstrating increased spreading on spin coated films. Fibres >3micro metre created a thicker mesh with potential for 3D culture supporting the infiltration of E-cadherin-/- ES cells. ppAm enabled non-covalent immobilisation of HS/heparin in a form that was free to participate in protein interactions and which presented essential sulphation motifs within the HS/heparin chains. Bound HS was biologically active and functioned in synchrony with FGF4 to enhance neural differentiation of EXT1-/- ES cells. The constructs also supported the attachment and growth of human ES cells, with HS functionalised scaffolds demonstrating a slight increase in compatibility during culture in unconditioned media. The successful functionalisation of electrospun meshes with HS/heparin creates a highly versatile scaffold for ES cell culture and differentiation. The architecture of the meshes can be manipulated to either serve as a fibrous substrate for maintenance of pluripotency or support the formation of complex cell interactions present in vivo. The immobilisation of HS provides an extra dimension of versatility, as the scaffold can be tailored with specific HS species, potentially enabling the differential regulation of growth factor binding.
135

Cryopreservation of human embryonic stem cells and hepatocytes

Chen, Shi January 2013 (has links)
No description available.
136

The Role of SirT1 in Resveratrol Toxicity

Morin, Katy January 2012 (has links)
SirT1 is a class III histone deacetylase that has beneficial roles in various diseases related to aging such as cancer, diabetes and neurodegenerative disease. Resveratrol is a natural compound that mimics most of the beneficial effects attributed to SirT1. Resveratrol has toxicity towards cancer cells and has been reported to be a direct activator of SirT1. Interestingly, SirT1 over-expression has also been reported to be toxic. We set out to determine if resveratrol toxicity is mediated through activation of SirT1. We have assessed resveratrol toxicity in embryonic stem cells and mouse embryonic fibroblast (MEFs) across different SirT1 genotypes. Our data indicates that SirT1 is not implicated in resveratrol toxicity in either normal or transformed MEFs. Thus, resveratrol toxicity does not appear to be mediated by SirT1.
137

Extrinsic and Intrinsic Signalling Pathways That Regulate Stem Cell Developmental Potential

Price, Feodor duPasquier January 2012 (has links)
Instructive signals, whether external or internal, play critical roles in regulating the developmental potency or ability to self-renew of stem cells. External signals may range from secreted growth factors to extracellular matrix proteins found in the stem cell niche. Internal signals include activated signalling cascades and the eventual transcriptional mechanisms they initiate. In either fashion, stem cells are regulated in a complex temporal and context specific manner in order to maintain or maximise their unique characteristics. Previous experiments suggest that Wnt3a plays a role in maintaining the pluripotent state of mouse embryonic stem (mES) cells. However, in the absence of leukemia inhibitory factor (LIF), Wnt signalling is unable to maintain ES cells in the undifferentiated state. This implies that maintaining the pluripotent state of mES cells is not the primary function of canonical Wnt signalling. To further characterize the role of Wnt3a in pluripotency and lineage specification undifferentiated and differentiated mES cells were induced with Wnt3a. Wnt3a induced the formation of a metastable primitive endoderm state and upon subsequent differentiation, the induction of large quantities of visceral endoderm. Furthermore, we determined that the ability of Wnt3a to induce a metastable primitive endoderm state was mediated by the T-box transcription factor Tbx3. Our data demonstrates a novel role for Wnt3a in promoting the interconversion of undifferentiated mES cells into a pluripotent primitive endoderm state. Aging of skeletal muscle tissue is accompanied by fibrosis, atrophy and remodeling all of which negatively affect muscle performance. Whether this reduction in skeletal muscle competency is directly attributed to a resident adult stem cell population called satellite cells remains largely unknown. Here, we undertook an investigation into how age affects the transcriptional profile of satellite cells and their repopulating ability following transplantation. We determined that as satellite cells age, both their regenerative capacity and ability to colonize the satellite cell niche is reduced. Additionally, we identified satellite cell specific transcriptional profiles that differed with respect to age. Therefore, we conclude that intrinsic factors are an important determinant of satellite cell regenerative capacity during the aging process.
138

Immune Modulation Potential of ESC Extracts on T Cells

AlKhamees, Bodour Abdullah January 2012 (has links)
Embryonic stem cells (ESCs) possess hypo-immunogenic properties and have the capacity to modulate allogeneic immune response. ESCs have been shown to reduce immune activation in response to third party antigen presenting cells (APCs) in vitro and have the capacity to promote allograft survival in vivo. Clinical use of live ESCs to treat immunological disorders, however, risks teratoma or ectopic tissue formation. Accordingly, the way lab is studying the immune modulatory potentials of ESC-derived factors and recently, found that dendritic cells (DCs) treated with human ESC extracts are poor stimulators of purified allogeneic T cells compared to those DCs treated with vehicle or fibroblast extracts. In the present study, I found that ESC-derived extracts directly inhibit T cell proliferation and suppress their activation without inducing cell death. Furthermore, ESC extracts are able to suppress Th1 polarization while increasing the numbers of Foxp3+ CD4+ CD25+ regulatory T cells. Moreover, I found that a protein called Milk fat globule-EGF factor 8 (MFG-E8) appears to be highly expressed in ESCs. Importantly, neutralizing MFG-E8 substantially abrogated the immune suppressive effects of ESC extracts on T cell activation. These findings lead to future studies to further define specific immunomodulatory factors derived from ESCs for potential applications.
139

External pH in culture on somatic cell reprogramming and cell differentiation in mouse and chicken cells / マウスおよびニワトリの体細胞初期化と幹細胞分化に及ぼすpHの影響に関する研究

Kim, Narae 23 January 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20092号 / 農博第2199号 / 新制||農||1046(附属図書館) / 学位論文||H29||N5026(農学部図書室) / 33208 / 京都大学大学院農学研究科応用生物科学専攻 / (主査)教授 今井 裕, 教授 松井 徹, 教授 久米 新一 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
140

Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells / Nat1はマウス胚性幹細胞の分化を誘導する特定のタンパク質の翻訳を促進する

Sugiyama, Hayami 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第20286号 / 医科博第77号 / 新制||医科||5(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 斎藤 通紀, 教授 篠原 隆司, 教授 戸口田 淳也 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM

Page generated in 0.0991 seconds