• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contrasting sequence groups by emerging sequences

Deng, Kang 11 1900 (has links)
Group comparison per se is a fundamental task in many scientific endeavours but is also the basis of any classifier. Comparing groups of sequence data is a relevant task. To contrast sequence groups, we define Emerging Sequences (ESs) as subsequences that are frequent in sequences of one group and less frequent in another, and thus distinguishing sequences of different classes. There are two challenges to distinguish sequence classes by ESs: the extraction of ESs is not trivially efficient and only exact matches of sequences are considered. In our work we address those problems by a suffix tree-based framework and a sliding window matching mechanism. A classification model based on ESs is also proposed. Evaluating against several other learning algorithms, the experiments on two datasets show that our similar ESs-based classification model outperforms the baseline approaches. With the ESs' high discriminative power, our proposed model achieves satisfactory F-measures on classifying sequences.
2

Contrasting sequence groups by emerging sequences

Deng, Kang Unknown Date
No description available.

Page generated in 0.0541 seconds