• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Emisiones acústicas como precursor de daño para carcterizar la dregradación en una bomba centrífuga

Hermosilla Pérez, Angelo Mauricio January 2017 (has links)
Ingeniero Civil Mecánico / El presente trabajo de título tiene como objetivo realizar una caracterización del estado de degradación de una bomba centrifuga en base a datos de emisiones acústicas (EA) medidas durante el período de operación hasta la falla. Las EA se pueden considerar como un indicador indirecto del daño, ya que permiten tener una noción de la evolución de este aún cuando no es directamente observable/medible. La distancia de Mahalanobis (DM), calculada a partir de las señales de EA obtenidas, permite obtener la medida de desviación de nuevas observaciones respecto a un conjunto de observaciones que den cuenta de un estado inicial. Con esto, es posible generar un índice de degradación a lo largo de la vida de operación del componente, tomando como el subconjunto de comparación a las mediciones que representan el estado saludable (sin degradación) del equipo bajo estudio. El diagnóstico de la bomba se realiza por medio de un filtro de partículas (FP), utilizado como método de inferencia dentro de una red Bayesiana dinámica (RBD). Esta permite representar la dependencia temporal y funcional entre todas las variables involucradas en el proceso de degradación considerado. Es necesario especificar cada dependencia dentro de la RBD. En particular se debe determinar el modelo de estado, que da cuenta de la evolución del daño en el tiempo, y el modelo de medición, que establece la relación entre las mediciones de EA con la degradación. En este caso, no existen modelos físicos que relacione las variables antes mencionadas, por lo tanto, ambos modelos se generan en base a datos. El modelo de estado es obtenido de una regresión polinomial entre los valores de la DM en base a la eficiencia de la bomba y el tiempo respectivo de cada medición. Para la generación del modelo de medición, se emplea la técnica de Support Vector Regression (SVR), la cual permite establecer una correlación no lineal entre las EA con el estado de daño. El FP emplea 1000 partículas para realizar la estimación del daño en cada instante de tiempo, este logra generar una estimación del daño de la bomba muy cercana a los valores de degradación real en el tiempo. Entre otras métricas de error, se obtuvo un coeficiente de determinación de R^2=0.9975. En base a los resultados, se puede concluir que el FP utilizado, en conjunto con los modelos generados, conducen un buen diagnóstico del estado de degradación de la bomba. Permitiendo tener una idea de la evolución del daño sufrido por la máquina a lo largo de su vida útil.
2

Diagnóstico de fallas basado en emisión acústica mediante redes neuronales convolucionales profundas

González Toledo, Danilo Fabián January 2018 (has links)
Ingeniero Civil Mecánico / La Ingeniería Mecánica está presente en la industria productiva debido a su aporte en la generación de equipos y sistemas que realicen determinadas funciones dentro de una línea de trabajo. A medida que los tiempos avanzan, los requerimientos de estos sistemas aumentan, presentando nuevos desafíos a la hora de su diseño y manufactura, pero también, durante su vida útil. En esto, el área de Gestión de Activos Físicos ha sido el protagonista a la hora de estudiar el desgaste, rastrear posibles fallas y realizar las mantenciones a tiempo de manera de reducir los tiempos fuera de operación que generan altos costos. Debido a lo anterior, cada vez es más urgente monitorear los sistemas y detectar a tiempo las situaciones que escapen de una operación eficiente y efectiva. Sin embargo, la gran dimensionalidad de la información obtenida mediante los diversos tipos de monitoreo y el alto ruido que normalmente presentan estos sistemas debido a sus componentes rotatorios o cíclicos, dificultan el análisis efectivo de las bases de datos. Es aquí donde los métodos de aprendizaje de máquinas presentan su potencial, ya que éstos realizan una extracción de características sobre la base de datos, para luego discriminar entre la información, generando una forma práctica de procesar la información disponible permitiendo un análisis efectivo. En particular, las Redes Neuronales Convolucionales (CNN) son un método de aprendizaje supervisado que está inspirado en las redes neuronales humanas y desarrolla su potencial en la clasificación de imágenes debido a que su método de aprendizaje incluye filtros que resaltan (o atenuan) rasgos destacables. Por otro lado, la emisión acústica es un fenómeno de generación de ondas elásticas debido a los cambios irreversibles en la estructura interna de un cuerpo sólido. Las anteriores pueden monitorearse mediante sensores, método de fácil implementación, alta densidad de datos y sensibilidad. En el presente trabajo de título se desarrollará un modelo de Red Neuronal Convolucional en la cual se procesarán señales brutas (sin procesamiento previo) de emisión acústica con el fin de generar un diagnóstico del estado de salud de un rotor experimental. El rotor utilizado es puesto a prueba bajo 25 clases diferentes: Grieta a 5[mm], 10[mm], 15[mm], 20[mm], 30[mm], 45[mm], 65[mm] y 90[mm] del acople al eje con tamaños de 3, 6 y 10 [mm], además se capturan señales del caso sano. Esta base de datos queda disponible para futuros trabajos, en el presente se trabaja con las fallas a 5[mm], 20[mm] y el caso sano. La metodología de trabajo se divide en 4 etapas principales: puesta a punto del sistema experimental, obtención de señales de emisión acústica, diseño, implementación y ajuste de la CNN y finalmente los resultados y análisis. El mejor modelo realizado consta de 3 clasificadores que en conjunto logran un desempeño global del 98,65% en la clasificación del estado de salud del sistema. Superando por un 7,5% al modelo más cercano con extracción previa de parámetros.

Page generated in 0.0596 seconds