• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and analysis of hyperbolic metamaterials for controlling the spontaneous emission rate and efficiency of quantum emitters / Modelo e análises de metamateriais hiperbólicos para o controle da taxa de emissão espontânea e eficiência de emissores quânticos

Mota, Achiles Fontana da 11 February 2019 (has links)
In the past few years, intensive research efforts have been devoted to studying new approaches to controlling the photon emission of quantum emitters (QEs), especially for telecommunication applications. These approaches rely on tailoring the QE\'s radiation, usually assessed via well-known figures-of-merit such as lifetime (τ) and quantum efficiency (η). Controlling the QE\'s photon emission is important because the faster its photons are emitted, the greater is the number of times it returns to the excited state per second. Therefore, it is crucial to create additional decay channels to reduce τ, which necessarily requires increasing the Purcell factor (P). One of the most promising approaches to increase P involves a new class of metamaterials, known as hyperbolic metamaterials (HMM). This class of materials exhibits pronounced anisotropy, with the parallel and perpendicular permittivity tensor elements (with respect to the anisotropy axis) presenting opposite signs, resulting in an open hyperboloidal isofrequency surface (IS). This unusual IS shape leads to the most outstanding feature of HMMs, namely, the existence of photonic modes with wavenumber (k) much larger than those in free-space (k0), known as high-k modes. By engineering these modes, it is possible to manipulate the HMM photonic density of states (PDoS), thus controlling the QE\'s radiation parameters. The simplest approach to designing HMM is by means of a planar stack of alternating thin metal and dielectric layers. However, the finite thickness of these layers induces spatial dispersion, making the extraction of effective parameters (homogenization) of these media a challenging task. In this context, we propose in this thesis a new constitutive parameter retrieval approach that takes spatial dispersion into account for all electromagnetic parameters of the medium. We demonstrate that the real part of the dispersion curve flattens out (correspondingly with a large imaginary part) because of the absence of propagating modes inside the metamaterial. This flat region is strongly dependent on the layer thicknesses and is a direct manifestation of spatial dispersion. Moreover, we demonstrate that the QE\'s lifetime calculation is overestimated if this effect is not taken into account in the homogenization procedure, which is detrimental for telecommunication applications. Moreover, we demonstrate how to enhance P by a factor greater than 100 with the use of HMMs. However, most of the QE dissipated power couples into the HMM as high-k modes (which do not propagate in free-space). Therefore, the energy is thermally dissipated inside the HMM with a consequent reduction of η . Some authors have resorted to nano-patterned HMMs (NPHM) to convert the high-k modes into free-space modes (k≤k0) aiming at increasing η. However, much of the NPHMs designs still rely on computationally costly three dimensional (3D) numerical simulations. Thus, we also propose in this thesis a new semi-analytical method to model, both in two- and three-dimensions (2D and 3D, respectively), the radiation emission of QEs interacting with nano-patterned structures. The low computational cost of this method makes it attractive for mapping P and η as function of the QE and NPHM relative position. This mapping is a helpful tool to understand the decay behavior of the whole system since QEs are arbitrarily distributed and oriented inside the NPHM. The analytically calculated decay curve allows the systems effective quantum efficiency (ηeff) and Purcell factor (Peff) to be directly obtained assuming multiple arbitrarily distributed electromagnetic sources. In this sense, we propose here a new procedure to optimize the NPHM geometrical parameters to maximize ηeff while achieving the desired Peff. We apply the proposed model to an NPHM composed of nine Ag/SiO2 layers, with the polymer host layer embedded with Rhodamine 6G, to maximize ηeff for a specified tenfold increase of Peff. This procedure allowed ηeff to be increased by 69% and 170% for one- and two-dimensional nano-patterning, respectively. Moreover, the time required to build the P and η maps (used in the calculation of the decay behavior) is reduced by approximately 96% when compared to those numerically calculated via FDTD. This procedure paves the way to the realization of new high-speed and efficient light sources for telecommunication applications. / Nos últimos anos, intensivo esforço tem sido devotado para o estudo de novas método para o controla da missão de fótons de emissores quânticos (EQs), especialmente para aplicações em telecomunicações. Estes métodos dependem da adaptação da radiação dos EQs, geralmente avaliadas por meio das bem conhecidas figuras de mérito, como o tempo de meia vida (τ) e a eficiência quântica (η). O controle da emissão de fótons é importante pois quanto mais rápido os fótons são emitidos, maior é o número de vezes que o EQ retorna ao seu estado excitado por segundo. Portanto, é crucial criar canais de decaimento adicionais para reduzir τ, o que necessariamente requer o aumento do fator de Purcell (P). Uma das abordagens mais promissoras para aumentar P envolve uma nova classe de metamateriais, conhecida como metamateriais hiperbólicos (MHs). Esta classe de materiais apresenta pronunciada anisotropia, onde os elementos paralelo e perpendicular do tensor de permissividade (em relação ao eixo de anisotropia) apresentam sinais opostos, resultando em uma superfície de isofrequência (SI) hiperboloidal aberta (IS). Essa forma incomum de SI leva à característica mais marcante dos MHs, a existência de modos fotônicos com número de onda (k) muito maior do que aqueles no espaço livre (k0), conhecidos como modos alto-k. Ao manipular esses modos, é possível manipular a densidade de estados fotônicos (DES) dos MHs, controlando assim os parâmetros de radiação do QE. A abordagem mais simples para a criação de MHs é por meio de uma pilha plana de camadas metálicas e dielétricas alternadas. Entretanto, a espessura finita dessas camadas induz a dispersão espacial, tornando a extração de parâmetros efetivos (homogeneização) destes meios uma tarefa desafiadora. Neste contexto, propomos nesta tese uma nova abordagem de recuperação de parâmetros constitutivos a dispersão espacial de todos os parâmetros eletromagnéticos do meio é levada em consideração. Nós demonstramos que a parte real da curva de dispersão se aplaina (correspondentemente com uma grande parte imaginária) devido à ausência de modos propagantes dentro do metamaterial. Esta região plana é fortemente dependente das espessuras das camadas e é uma manifestação direta da dispersão espacial Além disso, nós mostramos que se a dispersão espacial não for corretamente considerada no processo de homogeneização, o tempo de meia vida do EQ pode ser superestimado, o que é prejudicial para aplicações de telecomunicações. Além disso, demonstramos como melhorar P por um fator maior que 100 com o uso de MHs. a maior parte da potência dissipada pelos EQs são acopladas nos MHs como modos de alto-k (que não se propagam no espaço livre). Portanto, a energia é dissipada termicamente no interior do MH, resultando em uma redução de η. Alguns autores recorreram a MHs nano-estruturados (MHNE) para converter os modos alto-k em modos de espaço livre (k≤k0) visando o aumento de η. No entanto, muitos dos projetos do NPHM ainda dependem de simulações numéricas tridimensionais (3D) computacionalmente dispendiosas. Assim, também propomos nesta tese um novo método semi-analítico para modelar, tanto em duas como em três dimensões (2D e 3D, respectivamente), a emissão de radiação de EQs interagindo com estruturas nano-estruturadas. O baixo custo computacional deste método faz com que seja atrativo para o mapeamento de P e η em função da posição relativa do EQ e do MHNE. Esse mapeamento é uma ferramenta útil para entender o comportamento de decaimento de todo o sistema, já que os EQs são arbitrariamente distribuídos e orientados dentro do MHNE. A curva de decaimento calculada analiticamente permite que a eficiência quântica efetiva do sistema (ηeff) e o fator de Purcell (Peff) sejam obtidos diretamente, assumindo múltiplas fontes eletromagnéticas arbitrariamente distribuídas. Neste sentido, propomos aqui um novo procedimento para otimizar os parâmetros geométricos do MHNE visando a maximização de ηeff enquanto Peff é aumentado à um valor desejado. Aplicamos o modelo proposto a um MHNE composto por nove camadas de Ag/SiO2, com a camada de polímero embutida com Rodamina 6G, visando maximizar ηeff para um aumento de dez vezes de Peff. Este procedimento permitiu que o ηeff fosse incrementado em 69% e 170% para nano-estruturas uni e bidimensionais, respectivamente. Além disso, o tempo necessário para construir os mapas P e η (utilizados no cálculo da curva de decaimento) é reduzido em aproximadamente 96% quando comparado com os calculados numericamente via FDTD. Este procedimento abre caminho para o desenvolvimento de novas fontes de luz de alta velocidade e eficiência para aplicações de telecomunicações.
2

Modeling and analysis of hyperbolic metamaterials for controlling the spontaneous emission rate and efficiency of quantum emitters / Modelo e análises de metamateriais hiperbólicos para o controle da taxa de emissão espontânea e eficiência de emissores quânticos

Achiles Fontana da Mota 11 February 2019 (has links)
In the past few years, intensive research efforts have been devoted to studying new approaches to controlling the photon emission of quantum emitters (QEs), especially for telecommunication applications. These approaches rely on tailoring the QE\'s radiation, usually assessed via well-known figures-of-merit such as lifetime (τ) and quantum efficiency (η). Controlling the QE\'s photon emission is important because the faster its photons are emitted, the greater is the number of times it returns to the excited state per second. Therefore, it is crucial to create additional decay channels to reduce τ, which necessarily requires increasing the Purcell factor (P). One of the most promising approaches to increase P involves a new class of metamaterials, known as hyperbolic metamaterials (HMM). This class of materials exhibits pronounced anisotropy, with the parallel and perpendicular permittivity tensor elements (with respect to the anisotropy axis) presenting opposite signs, resulting in an open hyperboloidal isofrequency surface (IS). This unusual IS shape leads to the most outstanding feature of HMMs, namely, the existence of photonic modes with wavenumber (k) much larger than those in free-space (k0), known as high-k modes. By engineering these modes, it is possible to manipulate the HMM photonic density of states (PDoS), thus controlling the QE\'s radiation parameters. The simplest approach to designing HMM is by means of a planar stack of alternating thin metal and dielectric layers. However, the finite thickness of these layers induces spatial dispersion, making the extraction of effective parameters (homogenization) of these media a challenging task. In this context, we propose in this thesis a new constitutive parameter retrieval approach that takes spatial dispersion into account for all electromagnetic parameters of the medium. We demonstrate that the real part of the dispersion curve flattens out (correspondingly with a large imaginary part) because of the absence of propagating modes inside the metamaterial. This flat region is strongly dependent on the layer thicknesses and is a direct manifestation of spatial dispersion. Moreover, we demonstrate that the QE\'s lifetime calculation is overestimated if this effect is not taken into account in the homogenization procedure, which is detrimental for telecommunication applications. Moreover, we demonstrate how to enhance P by a factor greater than 100 with the use of HMMs. However, most of the QE dissipated power couples into the HMM as high-k modes (which do not propagate in free-space). Therefore, the energy is thermally dissipated inside the HMM with a consequent reduction of η . Some authors have resorted to nano-patterned HMMs (NPHM) to convert the high-k modes into free-space modes (k≤k0) aiming at increasing η. However, much of the NPHMs designs still rely on computationally costly three dimensional (3D) numerical simulations. Thus, we also propose in this thesis a new semi-analytical method to model, both in two- and three-dimensions (2D and 3D, respectively), the radiation emission of QEs interacting with nano-patterned structures. The low computational cost of this method makes it attractive for mapping P and η as function of the QE and NPHM relative position. This mapping is a helpful tool to understand the decay behavior of the whole system since QEs are arbitrarily distributed and oriented inside the NPHM. The analytically calculated decay curve allows the systems effective quantum efficiency (ηeff) and Purcell factor (Peff) to be directly obtained assuming multiple arbitrarily distributed electromagnetic sources. In this sense, we propose here a new procedure to optimize the NPHM geometrical parameters to maximize ηeff while achieving the desired Peff. We apply the proposed model to an NPHM composed of nine Ag/SiO2 layers, with the polymer host layer embedded with Rhodamine 6G, to maximize ηeff for a specified tenfold increase of Peff. This procedure allowed ηeff to be increased by 69% and 170% for one- and two-dimensional nano-patterning, respectively. Moreover, the time required to build the P and η maps (used in the calculation of the decay behavior) is reduced by approximately 96% when compared to those numerically calculated via FDTD. This procedure paves the way to the realization of new high-speed and efficient light sources for telecommunication applications. / Nos últimos anos, intensivo esforço tem sido devotado para o estudo de novas método para o controla da missão de fótons de emissores quânticos (EQs), especialmente para aplicações em telecomunicações. Estes métodos dependem da adaptação da radiação dos EQs, geralmente avaliadas por meio das bem conhecidas figuras de mérito, como o tempo de meia vida (τ) e a eficiência quântica (η). O controle da emissão de fótons é importante pois quanto mais rápido os fótons são emitidos, maior é o número de vezes que o EQ retorna ao seu estado excitado por segundo. Portanto, é crucial criar canais de decaimento adicionais para reduzir τ, o que necessariamente requer o aumento do fator de Purcell (P). Uma das abordagens mais promissoras para aumentar P envolve uma nova classe de metamateriais, conhecida como metamateriais hiperbólicos (MHs). Esta classe de materiais apresenta pronunciada anisotropia, onde os elementos paralelo e perpendicular do tensor de permissividade (em relação ao eixo de anisotropia) apresentam sinais opostos, resultando em uma superfície de isofrequência (SI) hiperboloidal aberta (IS). Essa forma incomum de SI leva à característica mais marcante dos MHs, a existência de modos fotônicos com número de onda (k) muito maior do que aqueles no espaço livre (k0), conhecidos como modos alto-k. Ao manipular esses modos, é possível manipular a densidade de estados fotônicos (DES) dos MHs, controlando assim os parâmetros de radiação do QE. A abordagem mais simples para a criação de MHs é por meio de uma pilha plana de camadas metálicas e dielétricas alternadas. Entretanto, a espessura finita dessas camadas induz a dispersão espacial, tornando a extração de parâmetros efetivos (homogeneização) destes meios uma tarefa desafiadora. Neste contexto, propomos nesta tese uma nova abordagem de recuperação de parâmetros constitutivos a dispersão espacial de todos os parâmetros eletromagnéticos do meio é levada em consideração. Nós demonstramos que a parte real da curva de dispersão se aplaina (correspondentemente com uma grande parte imaginária) devido à ausência de modos propagantes dentro do metamaterial. Esta região plana é fortemente dependente das espessuras das camadas e é uma manifestação direta da dispersão espacial Além disso, nós mostramos que se a dispersão espacial não for corretamente considerada no processo de homogeneização, o tempo de meia vida do EQ pode ser superestimado, o que é prejudicial para aplicações de telecomunicações. Além disso, demonstramos como melhorar P por um fator maior que 100 com o uso de MHs. a maior parte da potência dissipada pelos EQs são acopladas nos MHs como modos de alto-k (que não se propagam no espaço livre). Portanto, a energia é dissipada termicamente no interior do MH, resultando em uma redução de η. Alguns autores recorreram a MHs nano-estruturados (MHNE) para converter os modos alto-k em modos de espaço livre (k≤k0) visando o aumento de η. No entanto, muitos dos projetos do NPHM ainda dependem de simulações numéricas tridimensionais (3D) computacionalmente dispendiosas. Assim, também propomos nesta tese um novo método semi-analítico para modelar, tanto em duas como em três dimensões (2D e 3D, respectivamente), a emissão de radiação de EQs interagindo com estruturas nano-estruturadas. O baixo custo computacional deste método faz com que seja atrativo para o mapeamento de P e η em função da posição relativa do EQ e do MHNE. Esse mapeamento é uma ferramenta útil para entender o comportamento de decaimento de todo o sistema, já que os EQs são arbitrariamente distribuídos e orientados dentro do MHNE. A curva de decaimento calculada analiticamente permite que a eficiência quântica efetiva do sistema (ηeff) e o fator de Purcell (Peff) sejam obtidos diretamente, assumindo múltiplas fontes eletromagnéticas arbitrariamente distribuídas. Neste sentido, propomos aqui um novo procedimento para otimizar os parâmetros geométricos do MHNE visando a maximização de ηeff enquanto Peff é aumentado à um valor desejado. Aplicamos o modelo proposto a um MHNE composto por nove camadas de Ag/SiO2, com a camada de polímero embutida com Rodamina 6G, visando maximizar ηeff para um aumento de dez vezes de Peff. Este procedimento permitiu que o ηeff fosse incrementado em 69% e 170% para nano-estruturas uni e bidimensionais, respectivamente. Além disso, o tempo necessário para construir os mapas P e η (utilizados no cálculo da curva de decaimento) é reduzido em aproximadamente 96% quando comparado com os calculados numericamente via FDTD. Este procedimento abre caminho para o desenvolvimento de novas fontes de luz de alta velocidade e eficiência para aplicações de telecomunicações.
3

O estudo do emaranhamento na emissão espontânea no espaço livre e em uma cadeia de osciladores harmônicos acoplados

Monteiro, João Frederico Haas Leandro 11 March 2010 (has links)
Made available in DSpace on 2017-07-21T19:25:58Z (GMT). No. of bitstreams: 1 Joao Frederico.pdf: 2218397 bytes, checksum: 781c58d12bce3113c45da4e65bd0e36d (MD5) Previous issue date: 2010-03-11 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / In this dissertation, we studied entanglement in some fundamental systems of physics, such as an excited atom in free-space spontaneously decaying and coupled harmonic oscillators. In order to study entanglement in spontaneous emission in free-space, we employed theWeisskopf-Wigner theory which allowed us to obtain the time evolution of both the atom and field states. In the case of bipartite entanglement among field modes after spontaneous emission, we showed that the modes can become highly entangled and that the features of this entanglement strongly depend on the way the partitions are made. For the entanglement between atom and field during spontaneous emission, we were able to relate entanglement to a well known physical quantity namely the lifetime of an atom in a excited state. Keeping in mind the intention to study simple but relevant physical systems, we used in the second work a chain of coupled harmonic oscillators. It was well-known among researchers in the field of quantum information that a linear chain of coupled oscillators in the rotating wave approximation and prepared in classical states would never create entanglement. Then, we used two reference oscillators prepared in squeezed states to make creation of entanglement possible. We found results concerning the relationship between the phases in the reference oscillators’ state and dynamics of entanglement in the chain for some coupling configurations. We showed that it is not always true that squeezing can favor entanglement creation and that with the configuration used by us it is possible to localize entanglement. We proposed a possible implementation of our results in coupled microelectromechanical systems. / Nesta dissertação estudamos o emaranhamento em alguns sistemas fundamentais da Física, como um átomo no espaço livre realizando emissão espontânea e em osciladores harmônicos acoplados. Para o estudo do emaranhamento na emissão espontânea no espaço livre, utilizamos a teoria de Weisskopf-Wigner que nos permitiu obter a evolução temporal, tanto do estado do átomo, quanto do estado do campo. Para o caso de emaranhamento bipartido entre os modos do campo após a emissão espontânea, mostramos que os modos podem ficar altamente emaranhados e que as características desse emaranhamento dependem fortemente de como são realizadas as partições. Para o emaranhamento entre o átomo e o campo durante a emissão espontânea, pudemos relacionar o emaranhamento com uma quantidade Física bastante conhecida, o tempo de vida do átomo no seu estado excitado. Ainda com o intuito de estudar sistemas físicos simples, mas de relevância na Física, utilizamos, em um segundo trabalho, uma cadeia de osciladores harmônicos acoplados. Já era bem conhecido dos pesquisadores na área de informação quântica que uma cadeia linear de osciladores acoplados, na aproximação de onda girante e preparados em estados clássicos, não cria emaranhamento. Assim, utilizamos dois osciladores de referência em estados comprimidos para permitir a criação de emaranhamento. Encontramos resultados a respeito da relação das fases dos osciladores de referência e a dinâmica do emaranhamento na cadeia para algumas configurações de acoplamentos. Mostramos que nem sempre a compressão dos estados comprimidos favorece a criação de emaranhamento e que na configuração utilizada por nós é possível localizar o emaranhamento. Nós propusemos uma possível implementação de nossos estudos em sistemas microeletromecânicos acoplados.

Page generated in 0.0679 seconds