Spelling suggestions: "subject:"2mission inspection"" "subject:"2emission inspection""
1 |
Improvement of the efficiency of vehicle inspection and maintenance programs through incorporation of vehicle remote sensing data and vehicle characteristicsSamoylov, Alexander V. 13 January 2014 (has links)
Emissions from light-duty passenger vehicles represent a significant portion of total criteria pollutant emissions in the United States. Since the 1970s, emissions testing of these vehicles has been required in many major metropolitan areas, including Atlanta, GA, that were designated to be in non-attainment for one or more of the National Ambient Air Quality Standards. While emissions inspections have successfully reduced emissions by identifying and repairing high emitting vehicles, they have been increasingly inefficient as emissions control systems have become more durable and fewer vehicles are in need of repair. Currently, only about 9% of Atlanta area vehicles fail emissions inspection, but every vehicle is inspected annually. This research addresses explores ways to create a more efficient emissions testing program while continuing to use existing testing infrastructure. To achieve this objective, on road vehicle emissions data were collected as a part of the Continuous Atlanta Fleet Evaluation program sponsored the Georgia Department of Natural Resources. These remote sensing data were combined with in-program vehicle inspection data from the Atlanta Vehicle Inspection and Maintenance (I/M) program to establish the degree to which on road vehicle remote sensing could be used to enhance program efficiency. Based on this analysis, a multi-parameter model was developed to predict the probability of a particular vehicle failing an emissions inspection. The parameters found to influence the probability of failure include: vehicle characteristics, ownership history, vehicle usage, previous emission test results, and remote sensing emissions readings. This model was the foundation for a proposed emissions testing program that would create variable timing for vehicle retesting with high and low failure probability vehicles being more and less frequently, respectively, than the current annual cycle. Implementation of this program is estimated to reduce fleet emissions of 17% for carbon monoxide, 11% for hydrocarbons, and 5% for nitrogen oxides in Atlanta. These reductions would be achieved very cost-effectively at an estimated marginal cost of $149, $7,576 and $2,436 per-ton-per-year for carbon monoxide, hydrocarbons, and nitrogen oxides emissions reductions respectfully.
|
Page generated in 0.0974 seconds