• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of droplet size on the behavior and characteristics of emulsified acid

Almutairi, Saleh Haif 10 October 2008 (has links)
Emulsified acids have been extensively used in the oil industry since 1933. Most of the available research and publications discussed mainly the application of emulsified acid in the field. A fair number of the published work also discussed in depth some of the emulsified acid properties such viscosity, stability and reactivity. However, all of the available research discussed the emulsified acid without sufficient details of its preparation. Beside their chemical composition, the ways emulsified acids are prepared cause significant differences in their physical properties. The characterization of emulsified acid by its droplet size and size distribution complements its chemical composition and gives the emulsified acid a unique description and thus reproducible properties. No previous study considered the impact of the droplet size on the characteristics and properties of emulsified acid. Therefore, the main objective of this research is to study the effects of the droplet size on various properties of emulsified acid such as viscosity, stability and reactivity. Results showed that the droplet size and size distribution have a strong effect on the stability, viscosity and diffusion rate of the emulsified acid. The results of this work are important because knowledge of the effect of the droplet size on major design parameters will guide the way emulsified acid is prepared and applied in the field.
2

Stimulation of Carbonate Reservoirs Using a New Emulsified Acid System

Sayed, Mohammed Ali Ibrahim 16 December 2013 (has links)
The scope of work can be divided into; the measurement of the rheological properties of a new emulsified acid system that can be suitable for high temperature applications, a study of the performance of the new emulsified acid in stimulating both calcite and dolomite formations, measuring the reaction rate and diffusion coefficient when the new emulsified acid systems react with both calcite and dolomite, and testing the new emulsified acid using core samples obtained from carbonate reservoirs. The droplet size has a practical impact on the performance of emulsified acid. A good understanding and characterization of the emulsified acid by its size distribution will lead to better understanding of its stability, rheology and how it reacts with carbonate rocks. The influence of the concentration of the new emulsifier on the droplet size, droplet size distribution and upon the rheology of emulsified acids is studied in detail. The emulsified acid reaction kinetics with calcite rocks was studied before in few studies, and very little work was done with dolomite. One of the main objectives of the present work is to study in detail the reaction of the emulsified acid with both calcite and dolomite rocks using the rotating disk apparatus. Most of the previous studies on the emulsified acid were done using core samples that were saturated with brine or deionized water. One of the main objectives of the present work is to study in detail the effect of the presence of crude oil in the reservoir rock on the performance of emulsified acids. Lastly, an innovative technique of emulsifying the chelating agents is evaluated for high temperature applications. The rheology of the emulsified chelating agent is measured using an HPHT rheometer. Also, the reaction of the new emulsified chelating agent with calcite is studied using the rotating disk apparatus, and coreflood experiments were performed using chelating agents and calcite core samples.

Page generated in 0.0475 seconds