Spelling suggestions: "subject:"enantiotopic group& face selective"" "subject:"enantiotropic group& face selective""
1 |
Chemistry with lithium amide : enantiotopic group & face selective reactionsWang, Li 03 December 2007
The accomplishment of the γ-alkylation reaction from β-keto esters of tropinone and the enantioselective aziridine formation from nortropinone is first reported. This opened two new paths to develop tropinone enolate chemistry. One is indirect α-alkylation of tropinone, another is the nucleophilic attack from α-C enolate to the nitrogen atom.<p>Seven interesting chiral amines have been synthesized and applied into the enolate chemistry of two interesting precursors of synthesis of natural products: 1,4-
cyclohexanedione monoethylene ketal and tropinone.<p>The aldol reaction between the lithium enolate of 1,4-cyclohexanedione monoethylene ketal and benzaldehyde demonstrated the high diastereoselectivity (up to 98% de) and the moderate to high enantioselectivity (up to 75% ee) induced by those chiral lithium amides. On the other hand, high diastereoselectivity (up to 100% de) and the low enantioselectivity were obtained from the aldol reaction of tropinone enolate with benzaldehyde differentiated by chiral lithium amides with extra electron donor atoms.<p>An analysis method to determine enantioselectivity from racemic α-hydroxytropinone was developed. That will, no doubt, benefit the further enantioselective α-hydroxylation reaction of tropinone.
|
2 |
Chemistry with lithium amide : enantiotopic group & face selective reactionsWang, Li 03 December 2007 (has links)
The accomplishment of the γ-alkylation reaction from β-keto esters of tropinone and the enantioselective aziridine formation from nortropinone is first reported. This opened two new paths to develop tropinone enolate chemistry. One is indirect α-alkylation of tropinone, another is the nucleophilic attack from α-C enolate to the nitrogen atom.<p>Seven interesting chiral amines have been synthesized and applied into the enolate chemistry of two interesting precursors of synthesis of natural products: 1,4-
cyclohexanedione monoethylene ketal and tropinone.<p>The aldol reaction between the lithium enolate of 1,4-cyclohexanedione monoethylene ketal and benzaldehyde demonstrated the high diastereoselectivity (up to 98% de) and the moderate to high enantioselectivity (up to 75% ee) induced by those chiral lithium amides. On the other hand, high diastereoselectivity (up to 100% de) and the low enantioselectivity were obtained from the aldol reaction of tropinone enolate with benzaldehyde differentiated by chiral lithium amides with extra electron donor atoms.<p>An analysis method to determine enantioselectivity from racemic α-hydroxytropinone was developed. That will, no doubt, benefit the further enantioselective α-hydroxylation reaction of tropinone.
|
Page generated in 0.0994 seconds