Spelling suggestions: "subject:"encoderdecoder codels"" "subject:"encoderdecoder 2models""
1 |
Semantic Segmentation of Urban Scene Images Using Recurrent Neural NetworksDaliparthi, Venkata Satya Sai Ajay January 2020 (has links)
Background: In Autonomous Driving Vehicles, the vehicle receives pixel-wise sensor data from RGB cameras, point-wise depth information from the cameras, and sensors data as input. The computer present inside the Autonomous Driving vehicle processes the input data and provides the desired output, such as steering angle, torque, and brake. To make an accurate decision by the vehicle, the computer inside the vehicle should be completely aware of its surroundings and understand each pixel in the driving scene. Semantic Segmentation is the task of assigning a class label (Such as Car, Road, Pedestrian, or Sky) to each pixel in the given image. So, a better performing Semantic Segmentation algorithm will contribute to the advancement of the Autonomous Driving field. Research Gap: Traditional methods, such as handcrafted features and feature extraction methods, were mainly used to solve Semantic Segmentation. Since the rise of deep learning, most of the works are using deep learning to dealing with Semantic Segmentation. The most commonly used neural network architecture to deal with Semantic Segmentation was the Convolutional Neural Network (CNN). Even though some works made use of Recurrent Neural Network (RNN), the effect of RNN in dealing with Semantic Segmentation was not yet thoroughly studied. Our study addresses this research gap. Idea: After going through the existing literature, we came up with the idea of “Using RNNs as an add-on module, to augment the skip-connections in Semantic Segmentation Networks through residual connections.” Objectives and Method: The main objective of our work is to improve the Semantic Segmentation network’s performance by using RNNs. The Experiment was chosen as a methodology to conduct our study. In our work, We proposed three novel architectures called UR-Net, UAR-Net, and DLR-Net by implementing our idea to the existing networks U-Net, Attention U-Net, and DeepLabV3+ respectively. Results and Findings: We empirically showed that our proposed architectures have shown improvement in efficiently segmenting the edges and boundaries. Through our study, we found that there is a trade-off between using RNNs and Inference time of the model. Suppose we use RNNs to improve the performance of Semantic Segmentation Networks. In that case, we need to trade off some extra seconds during the inference of the model. Conclusion: Our findings will not contribute to the Autonomous driving field, where we need better performance in real-time. But, our findings will contribute to the advancement of Bio-medical Image segmentation, where doctors can trade-off those extra seconds during inference for better performance.
|
2 |
A Comparative Study of the Quality between Formality Style Transfer of Sentences in Swedish and English, leveraging the BERT model / En jämförande studie av kvaliteten mellan överföring av formalitetsstil på svenska och engelska meningar, med hjälp av BERT-modellenLindblad, Maria January 2021 (has links)
Formality Style Transfer (FST) is the task of automatically transforming a piece of text from one level of formality to another. Previous research has investigated different methods of performing FST on text in English, but at the time of this project there were to the author’s knowledge no previous studies analysing the quality of FST on text in Swedish. The purpose of this thesis was to investigate how a model trained for FST in Swedish performs. This was done by comparing the quality of a model trained on text in Swedish for FST, to an equivalent model trained on text in English for FST. Both models were implemented as encoder-decoder architectures, warm-started using two pre-existing Bidirectional Encoder Representations from Transformers (BERT) models, pre-trained on Swedish and English text respectively. The two FST models were fine-tuned for both the informal to formal task as well as the formal to informal task, using the Grammarly’s Yahoo Answers Formality Corpus (GYAFC). The Swedish version of GYAFC was created through automatic machine translation of the original English version. The Swedish corpus was then evaluated on the three criteria meaning preservation, formality preservation and fluency preservation. The results of the study indicated that the Swedish model had the capacity to match the quality of the English model but was held back by the inferior quality of the Swedish corpus. The study also highlighted the need for task specific corpus in Swedish. / Överföring av formalitetsstil syftar på uppgiften att automatiskt omvandla ett stycke text från en nivå av formalitet till en annan. Tidigare forskning har undersökt olika metoder för att utföra uppgiften på engelsk text men vid tiden för detta projekt fanns det enligt författarens vetskap inga tidigare studier som analyserat kvaliteten för överföring av formalitetsstil på svensk text. Syftet med detta arbete var att undersöka hur en modell tränad för överföring av formalitetsstil på svensk text presterar. Detta gjordes genom att jämföra kvaliteten på en modell tränad för överföring av formalitetsstil på svensk text, med en motsvarande modell tränad på engelsk text. Båda modellerna implementerades som kodnings-avkodningsmodeller, vars vikter initierats med hjälp av två befintliga Bidirectional Encoder Representations from Transformers (BERT)-modeller, förtränade på svensk respektive engelsk text. De två modellerna finjusterades för omvandling både från informell stil till formell och från formell stil till informell. Under finjusteringen användes en svensk och en engelsk version av korpusen Grammarly’s Yahoo Answers Formality Corpus (GYAFC). Den svenska versionen av GYAFC skapades genom automatisk maskinöversättning av den ursprungliga engelska versionen. Den svenska korpusen utvärderades sedan med hjälp av de tre kriterierna betydelse-bevarande, formalitets-bevarande och flödes-bevarande. Resultaten från studien indikerade att den svenska modellen hade kapaciteten att matcha kvaliteten på den engelska modellen men hölls tillbaka av den svenska korpusens sämre kvalitet. Studien underströk också behovet av uppgiftsspecifika korpusar på svenska.
|
Page generated in 0.0367 seconds