• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Accelerated many-body protein side-chain repacking using gpus: application to proteins implicated in hearing loss

Tollefson, Mallory RaNae 15 December 2017 (has links)
With recent advances and cost reductions in next generation sequencing (NGS), the amount of genetic sequence data is increasing rapidly. However, before patient specific genetic information reaches its full potential to advance clinical diagnostics, the immense degree of genetic heterogeneity that contributes to human disease must be more fully understood. For example, although large numbers of genetic variations are discovered during clinical use of NGS, annotating and understanding the impact of such coding variations on protein phenotype remains a bottleneck (i.e. what is the molecular mechanism behind deafness phenotypes). Fortunately, computational methods are emerging that can be used to efficiently study protein coding variants, and thereby overcome the bottleneck brought on by rapid adoption of clinical sequencing. To study proteins via physics-based computational algorithms, high-quality 3D structural models are essential. These protein models can be obtained using a variety of numerical optimization methods that operate on physics-based potential energy functions. Accurate protein structures serve as input to downstream variation analysis algorithms. In this work, we applied a novel amino acid side-chain optimization algorithm, which operated on an advanced model of atomic interactions (i.e. the AMOEBA polarizable force field), to a set of 164 protein structural models implicated in deafness. The resulting models were evaluated with the MolProbity structure validation tool. MolProbity “scores” were originally calibrated to predict the quality of X-ray diffraction data used to generate a given protein model (i.e. a 1.0 Å or lower MolProbity score indicates a protein model from high quality data, while a score of 4.0 Å or higher reflects relatively poor data). In this work, the side-chain optimization algorithm improved mean MolProbity score from 2.65 Å (42nd percentile) to nearly atomic resolution at 1.41 Å (95th percentile). However, side-chain optimization with the AMOEBA many-body potential function is computationally expensive. Thus, a second contribution of this work is a parallelization scheme that utilizes nVidia graphical processing units (GPUs) to accelerate the side-chain repacking algorithm. With the use of one GPU, our side-chain optimization algorithm achieved a 25 times speed-up compared to using two Intel Xeon E5-2680v4 central processing units (CPUs). We expect the GPU acceleration scheme to lessen demand on computing resources dedicated to protein structure optimization efforts and thereby dramatically expand the number of protein structures available to aid in interpretation of missense variations associated with deafness.
2

Novel Algorithms for Computational Protein Design, with Applications to Enzyme Redesign and Small-Molecule Inhibitor Design

Georgiev, Ivelin Stefanov January 2009 (has links)
<p>Computational protein design aims at identifying protein mutations and conformations with desired target properties (such as increased protein stability, switch of substrate specificity, or novel function) from a vast combinatorial space of candidate solutions. The development of algorithms to efficiently and accurately solve problems in protein design has thus posed significant computational and modeling challenges. Despite the inherent hardness of protein design, a number of computational techniques have been previously developed and applied to a wide range of protein design problems. In many cases, however, the available computational protein design techniques are deficient both in computational power and modeling accuracy. Typical simplifying modeling assumptions for computational protein design are the rigidity of the protein backbone and the discretization of the protein side-chain conformations. Here, we present the derivation, proofs of correctness and complexity, implementation, and application of novel algorithms for computational protein design that, unlike previous approaches, have provably-accurate guarantees even when backbone or continuous side-chain flexibility are incorporated into the model. We also describe novel divide-and-conquer and dynamic programming algorithms for improved computational efficiency that are shown to result in speed-ups of up to several orders of magnitude as compared to previously-available techniques. Our novel algorithms are further incorporated as part of K*, a provably-accurate ensemble-based algorithm for protein-ligand binding prediction and protein design. The application of our suite of protein design algorithms to a variety of problems, including enzyme redesign and small-molecule inhibitor design, is described. Experimental validation, performed by our collaborators, of a set of our computational predictions confirms the feasibility and usefulness of our novel algorithms for computational protein design.</p> / Dissertation

Page generated in 0.1089 seconds