• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Recurrent neural network language generation for dialogue systems

Wen, Tsung-Hsien January 2018 (has links)
Language is the principal medium for ideas, while dialogue is the most natural and effective way for humans to interact with and access information from machines. Natural language generation (NLG) is a critical component of spoken dialogue and it has a significant impact on usability and perceived quality. Many commonly used NLG systems employ rules and heuristics, which tend to generate inflexible and stylised responses without the natural variation of human language. However, the frequent repetition of identical output forms can quickly make dialogue become tedious for most real-world users. Additionally, these rules and heuristics are not scalable and hence not trivially extensible to other domains or languages. A statistical approach to language generation can learn language decisions directly from data without relying on hand-coded rules or heuristics, which brings scalability and flexibility to NLG. Statistical models also provide an opportunity to learn in-domain human colloquialisms and cross-domain model adaptations. A robust and quasi-supervised NLG model is proposed in this thesis. The model leverages a Recurrent Neural Network (RNN)-based surface realiser and a gating mechanism applied to input semantics. The model is motivated by the Long-Short Term Memory (LSTM) network. The RNN-based surface realiser and gating mechanism use a neural network to learn end-to-end language generation decisions from input dialogue act and sentence pairs; it also integrates sentence planning and surface realisation into a single optimisation problem. The single optimisation not only bypasses the costly intermediate linguistic annotations but also generates more natural and human-like responses. Furthermore, a domain adaptation study shows that the proposed model can be readily adapted and extended to new dialogue domains via a proposed recipe. Continuing the success of end-to-end learning, the second part of the thesis speculates on building an end-to-end dialogue system by framing it as a conditional generation problem. The proposed model encapsulates a belief tracker with a minimal state representation and a generator that takes the dialogue context to produce responses. These features suggest comprehension and fast learning. The proposed model is capable of understanding requests and accomplishing tasks after training on only a few hundred human-human dialogues. A complementary Wizard-of-Oz data collection method is also introduced to facilitate the collection of human-human conversations from online workers. The results demonstrate that the proposed model can talk to human judges naturally, without any difficulty, for a sample application domain. In addition, the results also suggest that the introduction of a stochastic latent variable can help the system model intrinsic variation in communicative intention much better.
2

Characterization of Structure-Borne Tire Noise Using Virtual Sensing

Nouri, Arash 27 January 2021 (has links)
Various improvements which have been made to the vehicle (reduced engine noise, reducedaerodynamic related NVH), have resulted in tire road noise as the dominant source of thevehicle interior noise. Generally, vehicle interior noise has two main sources, 1) travellinglow frequency excitation below 800 Hz from road surface through a structure- borne pathand 2) the high frequency (above 800 Hz) air-borne noise that is caused by air- pumpingnoise caused by tread pattern.The structure-borne waves of the circumference of the tire are generated by excitation atthe contact patch due to the road surface texture and characteristics. These vibrations arethen transferred from the sidewalls of the tire to the rim and then are transmitted throughthe spindle-wheel interface, resulting in high frequency vibration of vehicle body panels andwindows.The focus of this study is to develop several statistical-based models for analyzing the roadsurface and using them to predict the tire-road noise structure-borne component. In order todo this, a new methodology for sensing the road characteristics, such as asperities and roadsurface condition, were developed using virtual sensing and intelligent tire technology. In ad-dition, the spindle forces were used as an indicator to the structure-borne noise of the vehicle.Several data mining and multivariate analysis-based methods were developed to extractfeatures and to develop an empirical model to predict the power of structure-borne noiseunder different operational and road conditions. Finally, multiple data driven models-basedmodels were developed to classify the road types, and conditions and use them for the noisefrequency spectrum prediction. / Doctor of Philosophy / Multiple data driven models were developed in this study to use the vibration of the tirecontact patch as an input to sense some characteristics of road such as asperity, surface type,and the surface condition, and use them to predict the structure-borne noise power. Also,instead of measuring the noise using microphones, forces at wheel spindle were measuredas a metric for the noise power. In other words, a statistical model was developed that bysensing the road, and using the data along with other inputs, one can predict forces at thewheel spindle.
3

Spatial information and end-to-end learning for visual recognition / Informations spatiales et apprentissage bout-en-bout pour la reconnaissance visuelle

Jiu, Mingyuan 03 April 2014 (has links)
Dans cette thèse nous étudions les algorithmes d'apprentissage automatique pour la reconnaissance visuelle. Un accent particulier est mis sur l'apprentissage automatique de représentations, c.à.d. l'apprentissage automatique d'extracteurs de caractéristiques; nous insistons également sur l'apprentissage conjoint de ces dernières avec le modèle de prédiction des problèmes traités, tels que la reconnaissance d'objets, la reconnaissance d'activités humaines, ou la segmentation d'objets. Dans ce contexte, nous proposons plusieurs contributions : Une première contribution concerne les modèles de type bags of words (BoW), où le dictionnaire est classiquement appris de manière non supervisée et de manière autonome. Nous proposons d'apprendre le dictionnaire de manière supervisée, c.à.d. en intégrant les étiquettes de classes issues de la base d'apprentissage. Pour cela, l'extraction de caractéristiques et la prédiction de la classe sont formulées en un seul modèle global de type réseau de neurones (end-to-end training). Deux algorithmes d'apprentissage différents sont proposés pour ce modèle : le premier est basé sur la retro-propagation du gradient de l'erreur, et le second procède par des mises à jour dans le diagramme de Voronoi calculé dans l'espace des caractéristiques. Une deuxième contribution concerne l'intégration d'informations géométriques dans l'apprentissage supervisé et non-supervisé. Elle se place dans le cadre d'applications nécessitant une segmentation d'un objet en un ensemble de régions avec des relations de voisinage définies a priori. Un exemple est la segmentation du corps humain en parties ou la segmentation d'objets spécifiques. Nous proposons une nouvelle approche intégrant les relations spatiales dans l'algorithme d'apprentissage du modèle de prédication. Contrairement aux méthodes existantes, les relations spatiales sont uniquement utilisées lors de la phase d'apprentissage. Les algorithmes de classification restent inchangés, ce qui permet d'obtenir une amélioration du taux de classification sans augmentation de la complexité de calcul lors de la phase de test. Nous proposons trois algorithmes différents intégrant ce principe dans trois modèles : - l'apprentissage du modèle de prédiction des forêts aléatoires, - l'apprentissage du modèle de prédiction des réseaux de neurones (et de la régression logistique), - l'apprentissage faiblement supervisé de caractéristiques visuelles à l'aide de réseaux de neurones convolutionnels. / In this thesis, we present our research on visual recognition and machine learning. Two types of visual recognition problems are investigated: action recognition and human body part segmentation problem. Our objective is to combine spatial information such as label configuration in feature space, or spatial layout of labels into an end-to-end framework to improve recognition performance. For human action recognition, we apply the bag-of-words model and reformulate it as a neural network for end-to-end learning. We propose two algorithms to make use of label configuration in feature space to optimize the codebook. One is based on classical error backpropagation. The codewords are adjusted by using gradient descent algorithm. The other is based on cluster reassignments, where the cluster labels are reassigned for all the feature vectors in a Voronoi diagram. As a result, the codebook is learned in a supervised way. We demonstrate the effectiveness of the proposed algorithms on the standard KTH human action dataset. For human body part segmentation, we treat the segmentation problem as classification problem, where a classifier acts on each pixel. Two machine learning frameworks are adopted: randomized decision forests and convolutional neural networks. We integrate a priori information on the spatial part layout in terms of pairs of labels or pairs of pixels into both frameworks in the training procedure to make the classifier more discriminative, but pixelwise classification is still performed in the testing stage. Three algorithms are proposed: (i) Spatial part layout is integrated into randomized decision forest training procedure; (ii) Spatial pre-training is proposed for the feature learning in the ConvNets; (iii) Spatial learning is proposed in the logistical regression (LR) or multilayer perceptron (MLP) for classification.
4

Advances in deep learning methods for speech recognition and understanding

Serdyuk, Dmitriy 10 1900 (has links)
Ce travail expose plusieurs études dans les domaines de la reconnaissance de la parole et compréhension du langage parlé. La compréhension sémantique du langage parlé est un sous-domaine important de l'intelligence artificielle. Le traitement de la parole intéresse depuis longtemps les chercheurs, puisque la parole est une des charactéristiques qui definit l'être humain. Avec le développement du réseau neuronal artificiel, le domaine a connu une évolution rapide à la fois en terme de précision et de perception humaine. Une autre étape importante a été franchie avec le développement d'approches bout en bout. De telles approches permettent une coadaptation de toutes les parties du modèle, ce qui augmente ainsi les performances, et ce qui simplifie la procédure d'entrainement. Les modèles de bout en bout sont devenus réalisables avec la quantité croissante de données disponibles, de ressources informatiques et, surtout, avec de nombreux développements architecturaux innovateurs. Néanmoins, les approches traditionnelles (qui ne sont pas bout en bout) sont toujours pertinentes pour le traitement de la parole en raison des données difficiles dans les environnements bruyants, de la parole avec un accent et de la grande variété de dialectes. Dans le premier travail, nous explorons la reconnaissance de la parole hybride dans des environnements bruyants. Nous proposons de traiter la reconnaissance de la parole, qui fonctionne dans un nouvel environnement composé de différents bruits inconnus, comme une tâche d'adaptation de domaine. Pour cela, nous utilisons la nouvelle technique à l'époque de l'adaptation du domaine antagoniste. En résumé, ces travaux antérieurs proposaient de former des caractéristiques de manière à ce qu'elles soient distinctives pour la tâche principale, mais non-distinctive pour la tâche secondaire. Cette tâche secondaire est conçue pour être la tâche de reconnaissance de domaine. Ainsi, les fonctionnalités entraînées sont invariantes vis-à-vis du domaine considéré. Dans notre travail, nous adoptons cette technique et la modifions pour la tâche de reconnaissance de la parole dans un environnement bruyant. Dans le second travail, nous développons une méthode générale pour la régularisation des réseaux génératif récurrents. Il est connu que les réseaux récurrents ont souvent des difficultés à rester sur le même chemin, lors de la production de sorties longues. Bien qu'il soit possible d'utiliser des réseaux bidirectionnels pour une meilleure traitement de séquences pour l'apprentissage des charactéristiques, qui n'est pas applicable au cas génératif. Nous avons développé un moyen d'améliorer la cohérence de la production de longues séquences avec des réseaux récurrents. Nous proposons un moyen de construire un modèle similaire à un réseau bidirectionnel. L'idée centrale est d'utiliser une perte L2 entre les réseaux récurrents génératifs vers l'avant et vers l'arrière. Nous fournissons une évaluation expérimentale sur une multitude de tâches et d'ensembles de données, y compris la reconnaissance vocale, le sous-titrage d'images et la modélisation du langage. Dans le troisième article, nous étudions la possibilité de développer un identificateur d'intention de bout en bout pour la compréhension du langage parlé. La compréhension sémantique du langage parlé est une étape importante vers le développement d'une intelligence artificielle de type humain. Nous avons vu que les approches de bout en bout montrent des performances élevées sur les tâches, y compris la traduction automatique et la reconnaissance de la parole. Nous nous inspirons des travaux antérieurs pour développer un système de bout en bout pour la reconnaissance de l'intention. / This work presents several studies in the areas of speech recognition and understanding. The semantic speech understanding is an important sub-domain of the broader field of artificial intelligence. Speech processing has had interest from the researchers for long time because language is one of the defining characteristics of a human being. With the development of neural networks, the domain has seen rapid progress both in terms of accuracy and human perception. Another important milestone was achieved with the development of end-to-end approaches. Such approaches allow co-adaptation of all the parts of the model thus increasing the performance, as well as simplifying the training procedure. End-to-end models became feasible with the increasing amount of available data, computational resources, and most importantly with many novel architectural developments. Nevertheless, traditional, non end-to-end, approaches are still relevant for speech processing due to challenging data in noisy environments, accented speech, and high variety of dialects. In the first work, we explore the hybrid speech recognition in noisy environments. We propose to treat the recognition in the unseen noise condition as the domain adaptation task. For this, we use the novel at the time technique of the adversarial domain adaptation. In the nutshell, this prior work proposed to train features in such a way that they are discriminative for the primary task, but non-discriminative for the secondary task. This secondary task is constructed to be the domain recognition task. Thus, the features trained are invariant towards the domain at hand. In our work, we adopt this technique and modify it for the task of noisy speech recognition. In the second work, we develop a general method for regularizing the generative recurrent networks. It is known that the recurrent networks frequently have difficulties staying on same track when generating long outputs. While it is possible to use bi-directional networks for better sequence aggregation for feature learning, it is not applicable for the generative case. We developed a way improve the consistency of generating long sequences with recurrent networks. We propose a way to construct a model similar to bi-directional network. The key insight is to use a soft L2 loss between the forward and the backward generative recurrent networks. We provide experimental evaluation on a multitude of tasks and datasets, including speech recognition, image captioning, and language modeling. In the third paper, we investigate the possibility of developing an end-to-end intent recognizer for spoken language understanding. The semantic spoken language understanding is an important step towards developing a human-like artificial intelligence. We have seen that the end-to-end approaches show high performance on the tasks including machine translation and speech recognition. We draw the inspiration from the prior works to develop an end-to-end system for intent recognition.

Page generated in 0.0432 seconds