• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

End-of-day Far-red Light Quality and Dose Effects on Elongation of Tomato Rootstock Seedling Hypocotyls

Chia, Po-Lung January 2009 (has links)
Methyl bromide fumigation, a common method used to combat soil borne pathogens in commercial tomato cultivation, was to be limited by the Montreal Protocol due to concerns of ozone depletion. Alternative methods to protect tomatoes against diseases include grafting. However, short grafted transplants may expose the scion to the soil. To avoid scion exposure, hypocotyl elongation of two tomato rootstocks 'Maxifort' and 'Aloha' via end-of-day far-red (EOD-FR) was examined in terms of light quality (red to far-red ratio, or R/FR) and dose (product of far-red intensity and duration). In EOD-FR light quality experiments, 'Aloha' seedlings were exposed to unfiltered and filtered incandescent light with an R/FR of 0.5 and 0.05 respectively. The resulting hypocotyl elongation was higher in filtered light than either the unfiltered light or the untreated control. Hypocotyl elongation response to EOD-FR dose in 'Aloha' and 'Maxifort' was affected by both far-red intensity and treatment duration. A saturating response was also found within a far-red dose between 0–8 mmol•m⁻²•d⁻¹ and modeled using non-linear regression with a three parameter Michaelis-Menten equation to estimate the far-red dose required to obtain near-maximum hypocotyl elongation for 'Aloha' and 'Maxifort'. The far-red dose required was affected by cultivar and experimental period. None of the EOD-FR treatments affected plant mass or stem diameter. To conclude, for maximum hypocotyl elongation using EOD-FR, the lower R/FR would increase the effectiveness of the treatment. The far-red dose should preferably be at 4–8 mmol• m⁻²•d⁻¹.

Page generated in 0.0199 seconds