• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude fonctionnelle de SMAP1 : un nouveau gène à la croisée du trafic vésiculaire et de l'oncogenèse

Sangar, Fatiha 12 April 2012 (has links) (PDF)
La déficience du système de réparation des mésappariements de bases aboutit à une instabilité des séquences répétées ou microsatellites (MSI) qui engendre des mutations au niveau de gènes cibles de l'oncogenèse MSI. L'objectif de ma Thèse consistait à définir les conséquences fonctionnelles des mutations d'un nouveau gène cible de la tumorigenèse colorectale MSI : le gène SMAP1 (Small ArfGAP1) qui code une protéine de la famille ArfGAP (ADP ribosylation factor GTPase Activating Protein) spécifique d'Arf6, protéine impliquée dans de nombreux mécanismes cellulaires. Les mutations de SMAP1 sont spécifiques des tumeurs MSI de différentes origines tissulaires et n'apparaissent qu'au niveau de la répétition (A10). Dans les tumeurs colorectales primaires, la fréquence de mutations de SMAP1 observées diminue au cours de la progression tumorale suggérant que les tumeurs dépourvues de mutations de SMAP1 sont plus invasives. D'un point de vue fonctionnel, les mutations de SMAP1 ont pour conséquences un défaut dans le recyclage rapide du récepteur à la transferrine, une augmentation de la prolifération cellulaire et une diminution du pouvoir invasif en maintenant les jonctions adhérentes. Ainsi, nos observations montrant que les mutations de SMAP1 augmentent le pouvoir prolifératif mais diminuent le pouvoir invasif des lignées cellulaires issues de CCR MSI pourraient expliquer certaines caractéristiques cliniques des CCR MSI, les tumeurs MSI étant en effet des tumeurs volumineuses, ayant un faible pouvoir métastatique.
2

The regulation and induction of clathrin-mediated endocytosis through a protein aqueous-aqueous phase separation mechanism

Bergeron-Sandoval, Louis-Philippe 12 1900 (has links)
La morphologie des cellules et leurs interactions avec l’environnement découlent de divers procédés mécaniques qui contribuent à la richesse et à la diversité de la vie qui nous entoure. À titre d’exemple, les cellules mammifères se conforment à différentes géométries en fonction de l’architecture de leur cytosquelette tandis que les bactéries et les levures adoptent une forme circulaire par turgescence. Je présente, dans cette thèse, la découverte d’un mécanisme de morphogénèse supplémentaire, soit la déformation de surface cellulaire via l’assemblage de protéines par démixtion de phases aqueuses non miscibles et l’adhésion entre les matériaux biologiques. J’expose de façon spécifique comment ce mécanisme régule le recrutement et le mouvement dynamique des protéines qui induisent l’invagination de la membrane plasmique lors de l’endocytose clathrine-dépendante (CME). Le phénomène de démixtion des protéines dans le cytoplasme est analogue à la séparation de phase de l’huile en solution aqueuse. Il constitue un mécanisme cellulaire important et conservé, où les protéines s’agglomèrent grâce aux interactions intermoléculaires qui supplantent la tendance du système à former un mélange homogène. Plusieurs exemples de compartiments cellulaires dépourvus de membrane se forment par démixtion de phase, tels que le nucléole et les granules de traitement de l’ARN [1-6]. Ces organes ou compartiments dénommés NMO, du terme anglais « non-membranous organelles », occupent des fonctions de stockage, de traitement et de modification chimique des molécules dans la cellule. J’explore ici les questions suivantes : est-ce que les NMO occupent d’autres fonctions à caractère morphologique ? Quels signaux cellulaires régulent la démixtion de phase des protéines dans la formation des NMO ? Fondée sur la physique mécanique du contact entre les matériaux, j’émets l’hypothèse que des compartiments cellulaires nanoscopiques, formés par démixtion de phase, génèrent des forces mécaniques par adhésion interfaciale. Le travail mécanique ainsi obtenu déforme le milieu cellulaire et les surfaces membranaires adjacents au NMO nouvellement créé. Le but de mon doctorat est de comprendre comment les cellules orchestrent, dans le temps et l’espace, la formation des NMO associés au CME et comment ceux-ci génèrent des forces mécaniques. Mes travaux se concentrent sur les mécanismes de démixtion de phase et d’adhésion de contact dans le processus d’endocytose chez la levure Saccharomyces cerevisiae. Pour enquêter sur le rôle des modifications post-traductionnelles dans ces mécanismes, nous avons premièrement analysé la cinétique de phosphorylation des protéines en conditions de stress. Mes résultats démontrent que le recrutement et la fonction de certaines protéines impliquées dans le CME se régulent via des mécanismes de phosphorylation. Outre les processus de contrôle post-traductionnel, nous avons élucidé le rôle des domaines de faible complexité dans l’assemblage de plusieurs protéines associées avec le CME. De concert avec les modifications de phosphorylation, des domaines d’interaction protéine-protéine de type PrD (du terme « prion-like domains ») modulent directement le recrutement des protéines au sein des NMO associés au CME. La nature intrinsèquement désordonnée de ces PrD favorise un mécanisme d’assemblage des protéines par démixtion de phase tel que postulé. Finalement, mes travaux confirment que la formation de ces NMO spécifiques génère des forces mécaniques qui déforment la membrane plasmique et assurent le processus de CME. D’un point de vue fondamental, mes recherches permettent de mieux comprendre l’évolution d’une stratégie cellulaire pour assembler des compartiments cellulaires sans membrane et pour fixer les dimensions biologiques associées au CME. De manière plus appliquée, cette étude a le potentiel de générer des retombées importantes dans la compréhension et le traitement de maladies neurodégénératives souvent associées à une séparation de phase aberrante et à la formation d’agrégats protéiques liés à la pathologie. / Evolution has resulted in distinct mechanical processes that determine the shapes of living cells and their interactions with each other and with the environment. These molecular mechanisms have contributed to the wide variety of life we observe today. For example, mammalian cells rely on a complex cytoskeleton to adapt specific shapes whereas bacteria, yeast and plants use a combination of turgor pressure and cell walls to have their characteristic bloated form. In this dissertation, I describe my discovery of an unforeseen additional mechanism of morphogenesis: protein aqueous-aqueous phase separation and adhesive contact between biomaterials as a simple and efficient ways for cells to organize internal matter and accomplish work to shape internal structures and surfaces. I specifically describe how a fundamental process of phospholipid membrane and membrane-embedded protein recycling, clathrin-mediated endocytosis (CME), is driven by this mechanism. Analogous to water and oil emulsions, proteins, and biopolymers in general, can phase separate from single to a binary aqueous phase. For proteins that de-mix from the bulk environment, the intermolecular interactions (or cohesive energy) that favors protein condensation only needs to overcome the low mixing entropy of the system and represents a conserved and energy efficient cellular strategy [2, 3, 7, 8]. So far, various examples of phase separated cellular compartments, termed non-membranous organelles (NMOs), have been discovered. These include the nucleoli, germ line P granules and P bodies, to name a few [1-6]. NMOs are involved in many conserved biological processes and can function as storage, bioreactor or signaling bodies. Cells use phase separation as a scheme to organize internal matter, but do NMOs occupy other complex functions, such as morphogenesis? What specific signals trigger protein phase separation? Based on mechanical contact theory, I proposed that hundreds of nanometer- to micron-scale phase separated bodies can deform the cellular environment, both cytoplasm and membranes, through interfacial adhesion. I studied how mechanical contact between a phase-separated protein fluid droplet and CME nucleation sites on membranes drive endocytosis in the model organism budding yeast, Saccharomyces cerevisiae. Specifically, this dissertation describes first, my investigations of post-translational modifications (phosphorylation) of several CME-mediating proteins and the implications of these modifications in regulating CME. I then describe how my efforts to understand what was distinct about the proteins that are phosphorylated led me to propose their phase separation into droplets capable of driving invagination and vesicle formation from plasma membrane. I used fluorescence microscopy, mass spectrometry and micro rheology techniques to respectively determine the spatiotemporal dynamics, phosphorylation modifications and material properties of coalesced CME-mediating proteins. I further investigated how phase separation of these proteins might generate mechanical force. I demonstrate that changes in the phosphorylation of some endocytic proteins regulates their recruitment to CME nucleation sites. We achieved reliable predictions of functional phosphosites by combining information on the conservation of the post-translational modifications with analysis of the proportion of a protein that is dynamically phosphorylated with time. The same dynamically phosphorylated proteins were enriched for low amino acid compositional complexity “prion-like domains”, which we demonstrated were essential to these proteins undergoing aqueous-aqueous phase separation on CME nucleation sites. I then demonstrate how phase separated droplet can produce mechanical work to invaginate membranes and drive CME to completion. In summary, I have discovered a fundamental molecular mechanism by which phase separated biopolymers and membranes could apply work to shape each other. This mechanism determines the natural selection of spatial scale and material properties of CME. Finally, I discuss broader implications of this dissertation to mechanistic understandings of the origins of neurodegenerative diseases, which likely involve pathological forms of protein phase separation and/or aggregation.

Page generated in 0.0646 seconds