• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9 / CRISPR/Cas9を用いたプロモーター配列挿入による簡便なノックアウト・レスキューシステムの構築

Matsunaga, Taichi 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18177号 / 医博第3897号 / 新制||医||1004(附属図書館) / 31035 / 京都大学大学院医学研究科医学専攻 / (主査)教授 川口 義弥, 教授 中畑 龍俊, 教授 斎藤 通紀 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
2

Endothelial colony forming cells (ECFCs) identification, specification and modulation in cardiovascular diseases /

Huang, Lan. January 2009 (has links)
Thesis (Ph.D.)--Indiana University, 2009. / Title from screen (viewed on February 2, 2010). Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Mervin C. Yoder, Jr., David A. Ingram, Jr., Lawrence A. Quilliam, Mark D. Pescovitz. Includes vitae. Includes bibliographical references (leaves 171-194).
3

Endothelial Colony Forming Cells (ECFCs): Identification, Specification and Modulation in Cardiovascular Diseases

Huang, Lan 02 February 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A hierarchy of endothelial colony forming cells (ECFCs) with different levels of proliferative potential has been identified in human circulating blood and blood vessels. High proliferative potential ECFCs (HPP-ECFCs) display properties (robust proliferative potential in vitro and vessel-forming ability in vivo) consistent with stem/progenitor cells for the endothelial lineage. Corneal endothelial cells (CECs) are different from circulating and resident vascular endothelial cells (ECs). Whereas systemic vascular endothelium slowly proliferates throughout life, CECs fail to proliferate in situ and merely expand in size to accommodate areas of CEC loss due to injury or senescence. However, we have identified an entire hierarchy of ECFC resident in bovine CECs. Thus, this study provides a new conceptual framework for defining corneal endothelial progenitor cell potential. The identification of persistent corneal HPP-ECFCs in adult subjects might contribute to regenerative medicine in corneal transplantation. While human cord blood derived ECFCs are able to form vessels in vivo, it is unknown whether they are committed to an arterial or venous fate. We have demonstrated that human cord blood derived ECFCs heterogeneously express gene transcripts normally restricted to arterial or venous endothelium. They can be induced to display an arterial gene expression pattern after vascular endothelial growth factor 165 (VEGF165) or Notch ligand Dll1 (Delta1ext-IgG) stimulation in vitro. However, the in vitro Dll1 primed ECFCs fail to display significant skewing toward arterial EC phenotype and function in vivo upon implantation, suggesting that in vitro priming is not sufficient for in vivo specification. Future studies will determine whether ECFCs are amenable to specification in vivo by altering the properties of the implantation microenvironment. There is emerging evidence suggesting that the concentration of circulating ECFCs is closely related to the adverse progression of cardiovascular disorders. In a pig model of acute myocardial ischemia (AMI), we have demonstrated that AMI rapidly mobilizes ECFCs into the circulation, with a significant shift toward HPP-ECFCs. The exact role of the mobilized HPP-ECFCs in homing and participation in repair of the ischemic tissue remains unknown. In summary, these studies contribute to an improved understanding of ECFCs and suggest several possible therapeutic applications of ECFCs.

Page generated in 0.1657 seconds