• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Études des interactions fonctionnelles entre l'endothéline-3, les intégrines beta1 et les propriétés élastiques du tissu embryonnaire au cours du développement du système nerveux entérique / Functional interactions between endotheline-3, beta1 integrines and the elastic properties of the embryonic gut tissu during enteric nervous system development

Gazquez, Elodie 21 September 2016 (has links)
Le système nerveux entérique (SNE) provient des cellules de crête neurale entériques (CCNEs) qui migrent au sein de l'intestin embryonnaire, prolifèrent et se différencient en cellules gliales et neurones formant des ganglions interconnectés. Mon projet de thèse vise à comprendre comment les propriétés biochimiques et mécaniques de l'intestin embryonnaire influencent la colonisation et la différenciation des ccnes. L'absence d'endothéline-3 (EDN3), un facteur biochimique exprimé dans la paroi intestinale, est une des causes de la maladie de hirschsprung, caracterisée par une aganglionose du côlon distal. Nous montrons pour la première fois que l'EDN3 stimule l'adhésivité des CCNEs en augmentant leurs adhérences focales dépendantes des intégrines beta1 ainsi que la dynamique de leurs protrusions membranaires. De plus, nous avons mis en évidence l'existence d'une interaction génétique entre Edn3 et Itgb1 gouvernant le développement du SNE. Par ailleurs, les propriétés mécaniques du microenvironnement influençant la migration et la différenciation cellulaire , nous avons analysé par des approches biophysiques les propriétés élastiques de l'intestin embryonnaire et leurs impacts sur les comportements des ccnes. Nous avons montré que l'intestin embryonnaire se rigidifie au cours de son developpement et que la migration en 3D des CCNEs est inhibée lorsque la rigidité de l'environnement dépasse un certain seuil. Enfin, nous avons démarré l'analyse de l'effet de l'élasticité sur la différenciation des progéniteurs entériques. L'ensemble de nos résultats permettent de mieux comprendre les mécanismes contrôlant le développement du SNE. / The enteric nervous system (ENS) is derived from enteric neural crest cells (ENCC) that migrate along the length of the intestine through the gut mesenchyme. During this process, ENCC proliferate and differentiate into glial cells and neurons, which aggregate into ganglia. The aim of my thesis is to study how biochemical and mechanical properties of the gut tissue influence ENCC colonization and fate during embryogenesis. The absence of endothelin-3 (EDN3), a small peptide trapped in the embryonic gut mesenchyme, is one of the causes leading to hirschsprung disease, characterized by an aganglionosis of the distal colon. We highlighted for the first time that EDN3 increases ENCC adhesion properties throught 1-integrins focal adhesions and modulates their protrusion dynamics. Moreover, we evidenced a genetic interaction between Edn3 and Itgb1 during ENS development. Also, it is now well established that mechanical properties of the microenvironment influence fundamental mechanisms such as cell migration and cell fate determination. Thus, we analysed whether the mechanical properties of the ENCC’s environment influence their behaviours. Using biophysical approaches, we evidenced a physiological stiffening of the embryonic gut during its development and showed that ENCC migration in 3D is inhibited above a certain rigidity threshold. Finally, we begun to analyse the influence of the elastic properties of the environment onto enteric progenitor cells differenciation, taking advantage of the neurosphere culture system. All together, our results contribute to the understanding of the molecular and cellular mechanisms driving physiological and pathological ENS ontogenesis.

Page generated in 0.0526 seconds