• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Endurance training adaptations in high school runners

Cole, Andrew S. January 2004 (has links)
This study examined the effects of two distinct phases of endurance training (summer and in-season training) in previously well-trained male and female high school cross-country runners. Eleven males and 11 females from the same high school training program were recruited for the three testing sessions: post-track season (June), postsummer training (mid-August), and post-cross-country season (early-November). However, due to injury and other circumstances, only 10 males and 4 females completed all testing sessions. Thus, baseline characteristics were analyzed for both genders; however, longitudinal analysis was only conducted using the males. Submaximal measurements included running economy (RE), blood lactate concentration ([BLa]), and heart rate (HR) at three running speeds in females (6, 7, and 8 mph), and males (7, 8, and 9 mph). Maximal measurements of oxygen uptake (VO2max) and HR, neuromuscular characteristics of isokinetic knee extension strength and vertical jump height, and body composition were also measured. Baseline results showed that the males possessed a higher VO2max, greater neuromuscular characteristics, and lower submaximal [BLa] and HR values than the females. Longitudinal analysis of the males showed that there was an increased VO2max, decreased maximal HR, and decreased neuromuscular strength following summer training. In-season training precipitated further increases in VO2max, an increase in maximal and submaximal HR, and increased neuromuscular characteristics. RE and [BLa] did not significantly change (p<_ 0.05) throughout the course of the study. Likely, it is the subtle changes in these variables in previously welltrained runners which account for the slower performance times at the beginning of the cross-country season and the improvements thereafter. / School of Physical Education
2

The effects of cross-country training on male high school runners

Plank, David M. January 1999 (has links)
The purpose of this study is to determine physiological adaptations in trained male high-school runners before and after high-intensity training associated with a crosscountry season. Testing occurred on five separate occasions at the Human Performance Laboratory. After the first familiarization session, the subjects performed a treadmill graded exercise test in which maximal oxygen consumption and ventilatory threshold was measured. Submaximal oxygen consumption and blood lactate concentration at three running speeds (10, 12, and 14 km'hf 1 at 0% grade) was determined in a second testing session. After the cross-country season (13 weeks) the subjects returned to the laboratory and performed the same graded exercise and submaximal exercise tests. VO2max significantly increased, VT tended to increased, however, not significant. There were no changes in submaximal economy or lactate except for significant decline in blood lactate at 14 km hf' . Although these variables are associated with endurance performance in adults, there is very little information available regarding the effects of endurance training on these variables in the adolescent age group. Knowing the extent of the adaptations will help to optimize the training programs for age group. / School of Physical Education
3

Time course of performance changes and fatigue markers during training for the ironman triathlon

Joiner, Alexander Jason January 2010 (has links)
Suboptimal preparation for the Ironman triathlon can have detrimental effects on mental and physical condition. The purpose of this longitudinal investigation was to examine the relationship between a number of performance changes and fatigue markers during training for an Ironman as well as immediately after the event, in an attempt to better understand the effects of ultraendurance training. Eighteen athletes training for the Ironman; South Africa, 2009 were recruited for the study. Over the 6 month data collection period body mass, training load (TRIMP and Session x RPE methods), physiological responses (waking heart rate, postural dizziness, sleep ratings), changes in psychological state (profile of mood states - POMS), reported immunological responses (symptoms of illness), biochemical changes (salivary cortisol and alpha amylase) and performance (8 km submaximal running time trial (TT) and race day performance) were measured. These responses were compared to a control sample (n=15). Results show a significant increase (p<0.05) in training load (3899.4 ± 2517.8) four weeks prior to the event. Fatigue scores significantly increased (p<0.05) concurrently with this significant increase (p<0.05) in training. TT performance did not significantly (p<0.05) alter during the time course of training. It was however strongly correlated to training load (R2=0.85) and modestly related to race performance (R2=0.65). The signs and symptoms of upper respiratory tract infections (URTI) were prevalent during the training period, decreasing during the taper and race period. Large standard deviations were found within the majority of the responses. During the final two weeks of preparation, tension scores were significantly increased (p<0.05) while training load significantly decreased (p<0.05) during the final week of preparation. Cortisol increased significantly (p<0.05) immediately post race (0.507±0.15<g.DL-1) and 1.5 hours later (0.796±0.23<g.DL-1). Overall the results indicate that the POMS questionnaire was a sensitive marker of fatigue and stress associated with ultraendurance training, and that the event itself placed a great deal of stress on the athletes which was illustrated by the post event measures.
4

The effect of the glycemic index on endurance performance

Vogel, Etresia 03 January 2007 (has links)
There exist a wide variety of metabolic responses to different types of carbohydrates and their influence on metabolism during endurance training. Recent studies revealed that the physiological responses to food are far more complex than was previously appreciated. The rapid release of insulin and the decline in blood sugar levels during the first stages of endurance training are linked to the Glycemic Index of foods. Researchers cannot still make use of the old distinction between starchy and sugary food or simple and complex carbohydrates. These distinctions are based on the chemical analysis of the food, which does not totally reflect the effects of these foods on the body. The Glycemic Index is a more reliable guideline to apply in nutritional management for endurance athletes. The major object of the study was to indicate the importance of utilizing the Glycemic Index (GI) as part of the nutritional preparation for endurance events. The study investigated the advantages of ingesting a Low Glycemic Index meal prior to exercise and compared it with the ingestion of a High Glycemic Index meal. A pretest-posttest design was used. Twelve healthy, male and female cyclists participated in the study. Subjects were selected according to their level of training. The total test period consisted of 14 days, which included two different dietary interventions of 7 days each. Diet -and training analysis were done on the subjects prior to the commencement of the study. Each subject completed three exercise trials. The first exercise trial consisted of a V02max test until exhaustion. Two submaximal trials (65 - 70 % of V02max) followed and were preceded by two dietary interventions. The dietary interventions (7 days each) had the same amount of CHO, fat and protein but differed in the Glycemic Index of the pre-exercise meals. The first pre-exercise meal was a High Glycemic Index (HGI) meal. The second pre-exercise meal was a Low Glycemic Index (LGI) meal. The results of the study indicated the advantages of ingesting a Low Glycemic Index meal prior to endurance exercise. The drop in blood glucose levels significantly differed (p<0.05) with an average of 0.68 mmol/L between the two tests after 10 minutes of cycling. It took 20 minutes for the blood sugar level of the first testto reach the same level of the blood sugar level of the second test. After the ingestion of the High Glycemic Index meal in Test 1, the blood lactate levels were significantly higher (p<0.05) during the first 15 minutes. The total distance covered by the subjects was 22.86 km after the first dietary intervention (High glycemic Index food) and 27.43 km after the second dietary intervention (Low glycemic Index food) although it is not statistically significant due to the small sample size. The difference in the distance covered of the two tests is 4.57 km in a period of 50 minutes. Subjects indicated that they experienced more physical strain (higher RPE values) in Test 1 (High Glycemic Index food) than in Test 2 (Low Glycemic Index food) (p<0.05). The study results support the fact that Low glycemic index food may confer an advantage when eaten prior to prolonged strenuous exercise by providing a slow¬releasing source of glucose to the blood without causing extensive hypoglycemia. Proper preparation and the correct choice of the pre-exercise meal can exclude the occurrence of sudden drops in the blood sugar levels. The Glycemic Index can also be successfully applied during and after events to improve performance. / Dissertation (MA (MHS))--University of Pretoria, 2007. / Arts, Languages and Human Movement Studies Education / unrestricted

Page generated in 0.1173 seconds