Spelling suggestions: "subject:"conergy aquation"" "subject:"conergy cquation""
1 |
振動彈簧的擾動性質 / On the perturbation of vibrating spring洪三原 Unknown Date (has links)
In this work we deal with the nonlinear o.d.e u"+ku = εu<sup>3</sup> which represents a spring-mass system with no damping but perturbed by external force εu<sup>3</sup>. We want to know how the spring constant k and the perturbed term act on the equation. So we study this equation by the way:
(I) u" + ku = 0 (II)u" = u<sup>3</sup> (III) u" + ku = εu<sup>3</sup>
During the period of calculating, we find that k, ε and energy constant E(0) play important roles in the properties of the solutions of the equation. Finally we give the relation about them.
|
2 |
Comparison of the hybrid and thermal lattice-Boltzmann methodsOlander, Jonathan 24 August 2009 (has links)
This thesis deals with the lattice-Boltzmann method (LBM) in combination with other methods to solve thermal flow problems. The three primary, current approaches for thermal lattice-Boltzmann method (TLBM) will be introduced. The three approaches are the multispeed approach by McNamara and Alder , the passive scalar approach by Shan, and the thermal distribution model proposed by He et al.
Shi et al. simplified the thermal distribution model for incompressible thermal flows. The model proposed by Shi et al. was simulated and compared to a hybrid LBM and energy equation model proposed by Khiabani et al.
The thermal lattice-Boltzmann method will be compared to the temperature fields generated by the energy equation of the hybrid method. To determine which method is better suited from computer simulations the two will be compared for computational demands, and the speed of both convergence and computation.
|
3 |
Análise de escoamentos não-isotérmicos, incompressíveis, utilizando simulação de grandes escalas e o método de elementos finitos / Analysis of non-isotheemal,incompressible flows, using large eddy simulation and finite element methodSantos, Elizaldo Domingues dos January 2007 (has links)
Neste trabalho é apresentado um estudo numérico sobre escoamentos incompressíveis, não isotérmicos, bi e tridimensionais nos regimes laminar e turbulento através da Simulação de Grandes Escalas e da utilização do Método de Elementos Finitos. Para tornar isso possível, é implementada a equação da energia e os termos de forças de campo (empuxo) em um algoritmo numérico desenvolvido em FORTRAN, já existente, que simula escoamentos incompressíveis, isotérmicos, tridimensionais, nos regimes laminar e turbulento. O código desenvolvido abrange escoamentos onde as formas básicas de troca térmica ocorrem por difusão e advecção. No que tange a natureza da convecção térmica é possível analisar escoamentos com convecção forçada, mista ou natural. O método numérico empregado é o de elementos finitos (FEM) e a discretização espacial das equações que governam o fenômeno (continuidade, conservação da quantidade de movimento e conservação da energia) é realizada através do método de Galerkin. Para a análise dos termos temporais nos escoamentos transientes aplica-se o esquema temporal explícito de Taylor-Galerkin. O elemento finito utilizado é o hexaedro isoparamétrico de oito nós. É empregado o método da pseudo-compressibilidade com o objetivo de manter os termos derivados da pressão na equação da continuidade, pois essa ausência gera uma dificuldade adicional na discretização das equações. Para a abordagem da turbulência é empregada a simulação de grandes escalas (LES) com modelagem sub-malha clássica de Smagorinsky para a viscosidade e a difusividade turbulenta. Visando a melhoria no tempo de processamento foi utilizada integração explícita das matrizes dos elementos e a técnica de processamento paralelo OpenMP. São apresentados resultados para escoamentos com vários números de Reynolds, Prandtl e de Grashoff dos campos de velocidade, pressão e temperatura para escoamentos em cavidade bidimensional, nos regimes laminar e turbulento, e para o degrau tri-dimensional no regime laminar. As simulações para escoamentos em cavidades nos regimes laminar e na região de transição são comparados com os resultados de outros autores, se mostrando bastante satisfatórios, tanto no regime transiente como no permanente. Além disso, a inserção das forças de campo no código melhorou os resultados obtidos com o mesmo. As outras simulações são apresentadas como novos casos e tiveram um comportamento qualitativamente satisfatório. / A numerical study about non-isothermal, bi and three-dimensional, incompressible, laminar and turbulent flows is done in this work using Large Eddy Simulation and Finite Element Method. To became this possible, is implemented the energy equation and buoyance forces (in the Navier-Stokes equations) in a numerical algorithm, developed in FORTRAN, already existent, that simulate isothermal, three-dimensional, incompressible, laminar and turbulent flows. The developed code includes flows where the basic forms of heat transfer are diffusion or advection. About the nature of thermal convection it is possible to analyze the forced, mixed or natural convection flows. The numerical method used is the finite element method (FEM) and the spatial discretization of governing equations of phenomena (mass, conservation of momentum and conservation of energy) is done through Galerkin method. To analyze the time-dependent terms in transient flows is employed a time-explicit Taylor-Galerkin scheme. The finite element used is the isoparametric hexahedral with eight nodes. It is used the pseudo-compressibility method to keep the pressure terms in continuity equation, because without these terms there are additional difficulties to obtain the discretizated equations. Regarding the turbulence approach, it is employed the large eddy simulation (LES) and for subgrid-scales is used the classical Smagorinsky model to turbulent viscosity and diffusivity. To minimize the processing time is used explicit integration of element matrix and the multiprocessing technical OpenMP. Results are presented to a wide range of Reynolds, Prandtl and Grashoff numbers for velocity, pressure and temperature fields to laminar and turbulent, bi-dimensional, lid-driven cavity flow and a laminar three-dimensional backward-facing step. Simulations of lid-driven cavity flows in laminar and transitional regimes is compared with others authors results, presenting good agreement, in both transient and permanent regimes. Besides that, the implementation of buoyance forces in the present code improved the results obtained by it. The others simulations are presented like new cases and had qualitatively good behavior.
|
4 |
Análise de escoamentos não-isotérmicos, incompressíveis, utilizando simulação de grandes escalas e o método de elementos finitos / Analysis of non-isotheemal,incompressible flows, using large eddy simulation and finite element methodSantos, Elizaldo Domingues dos January 2007 (has links)
Neste trabalho é apresentado um estudo numérico sobre escoamentos incompressíveis, não isotérmicos, bi e tridimensionais nos regimes laminar e turbulento através da Simulação de Grandes Escalas e da utilização do Método de Elementos Finitos. Para tornar isso possível, é implementada a equação da energia e os termos de forças de campo (empuxo) em um algoritmo numérico desenvolvido em FORTRAN, já existente, que simula escoamentos incompressíveis, isotérmicos, tridimensionais, nos regimes laminar e turbulento. O código desenvolvido abrange escoamentos onde as formas básicas de troca térmica ocorrem por difusão e advecção. No que tange a natureza da convecção térmica é possível analisar escoamentos com convecção forçada, mista ou natural. O método numérico empregado é o de elementos finitos (FEM) e a discretização espacial das equações que governam o fenômeno (continuidade, conservação da quantidade de movimento e conservação da energia) é realizada através do método de Galerkin. Para a análise dos termos temporais nos escoamentos transientes aplica-se o esquema temporal explícito de Taylor-Galerkin. O elemento finito utilizado é o hexaedro isoparamétrico de oito nós. É empregado o método da pseudo-compressibilidade com o objetivo de manter os termos derivados da pressão na equação da continuidade, pois essa ausência gera uma dificuldade adicional na discretização das equações. Para a abordagem da turbulência é empregada a simulação de grandes escalas (LES) com modelagem sub-malha clássica de Smagorinsky para a viscosidade e a difusividade turbulenta. Visando a melhoria no tempo de processamento foi utilizada integração explícita das matrizes dos elementos e a técnica de processamento paralelo OpenMP. São apresentados resultados para escoamentos com vários números de Reynolds, Prandtl e de Grashoff dos campos de velocidade, pressão e temperatura para escoamentos em cavidade bidimensional, nos regimes laminar e turbulento, e para o degrau tri-dimensional no regime laminar. As simulações para escoamentos em cavidades nos regimes laminar e na região de transição são comparados com os resultados de outros autores, se mostrando bastante satisfatórios, tanto no regime transiente como no permanente. Além disso, a inserção das forças de campo no código melhorou os resultados obtidos com o mesmo. As outras simulações são apresentadas como novos casos e tiveram um comportamento qualitativamente satisfatório. / A numerical study about non-isothermal, bi and three-dimensional, incompressible, laminar and turbulent flows is done in this work using Large Eddy Simulation and Finite Element Method. To became this possible, is implemented the energy equation and buoyance forces (in the Navier-Stokes equations) in a numerical algorithm, developed in FORTRAN, already existent, that simulate isothermal, three-dimensional, incompressible, laminar and turbulent flows. The developed code includes flows where the basic forms of heat transfer are diffusion or advection. About the nature of thermal convection it is possible to analyze the forced, mixed or natural convection flows. The numerical method used is the finite element method (FEM) and the spatial discretization of governing equations of phenomena (mass, conservation of momentum and conservation of energy) is done through Galerkin method. To analyze the time-dependent terms in transient flows is employed a time-explicit Taylor-Galerkin scheme. The finite element used is the isoparametric hexahedral with eight nodes. It is used the pseudo-compressibility method to keep the pressure terms in continuity equation, because without these terms there are additional difficulties to obtain the discretizated equations. Regarding the turbulence approach, it is employed the large eddy simulation (LES) and for subgrid-scales is used the classical Smagorinsky model to turbulent viscosity and diffusivity. To minimize the processing time is used explicit integration of element matrix and the multiprocessing technical OpenMP. Results are presented to a wide range of Reynolds, Prandtl and Grashoff numbers for velocity, pressure and temperature fields to laminar and turbulent, bi-dimensional, lid-driven cavity flow and a laminar three-dimensional backward-facing step. Simulations of lid-driven cavity flows in laminar and transitional regimes is compared with others authors results, presenting good agreement, in both transient and permanent regimes. Besides that, the implementation of buoyance forces in the present code improved the results obtained by it. The others simulations are presented like new cases and had qualitatively good behavior.
|
5 |
Análise de escoamentos não-isotérmicos, incompressíveis, utilizando simulação de grandes escalas e o método de elementos finitos / Analysis of non-isotheemal,incompressible flows, using large eddy simulation and finite element methodSantos, Elizaldo Domingues dos January 2007 (has links)
Neste trabalho é apresentado um estudo numérico sobre escoamentos incompressíveis, não isotérmicos, bi e tridimensionais nos regimes laminar e turbulento através da Simulação de Grandes Escalas e da utilização do Método de Elementos Finitos. Para tornar isso possível, é implementada a equação da energia e os termos de forças de campo (empuxo) em um algoritmo numérico desenvolvido em FORTRAN, já existente, que simula escoamentos incompressíveis, isotérmicos, tridimensionais, nos regimes laminar e turbulento. O código desenvolvido abrange escoamentos onde as formas básicas de troca térmica ocorrem por difusão e advecção. No que tange a natureza da convecção térmica é possível analisar escoamentos com convecção forçada, mista ou natural. O método numérico empregado é o de elementos finitos (FEM) e a discretização espacial das equações que governam o fenômeno (continuidade, conservação da quantidade de movimento e conservação da energia) é realizada através do método de Galerkin. Para a análise dos termos temporais nos escoamentos transientes aplica-se o esquema temporal explícito de Taylor-Galerkin. O elemento finito utilizado é o hexaedro isoparamétrico de oito nós. É empregado o método da pseudo-compressibilidade com o objetivo de manter os termos derivados da pressão na equação da continuidade, pois essa ausência gera uma dificuldade adicional na discretização das equações. Para a abordagem da turbulência é empregada a simulação de grandes escalas (LES) com modelagem sub-malha clássica de Smagorinsky para a viscosidade e a difusividade turbulenta. Visando a melhoria no tempo de processamento foi utilizada integração explícita das matrizes dos elementos e a técnica de processamento paralelo OpenMP. São apresentados resultados para escoamentos com vários números de Reynolds, Prandtl e de Grashoff dos campos de velocidade, pressão e temperatura para escoamentos em cavidade bidimensional, nos regimes laminar e turbulento, e para o degrau tri-dimensional no regime laminar. As simulações para escoamentos em cavidades nos regimes laminar e na região de transição são comparados com os resultados de outros autores, se mostrando bastante satisfatórios, tanto no regime transiente como no permanente. Além disso, a inserção das forças de campo no código melhorou os resultados obtidos com o mesmo. As outras simulações são apresentadas como novos casos e tiveram um comportamento qualitativamente satisfatório. / A numerical study about non-isothermal, bi and three-dimensional, incompressible, laminar and turbulent flows is done in this work using Large Eddy Simulation and Finite Element Method. To became this possible, is implemented the energy equation and buoyance forces (in the Navier-Stokes equations) in a numerical algorithm, developed in FORTRAN, already existent, that simulate isothermal, three-dimensional, incompressible, laminar and turbulent flows. The developed code includes flows where the basic forms of heat transfer are diffusion or advection. About the nature of thermal convection it is possible to analyze the forced, mixed or natural convection flows. The numerical method used is the finite element method (FEM) and the spatial discretization of governing equations of phenomena (mass, conservation of momentum and conservation of energy) is done through Galerkin method. To analyze the time-dependent terms in transient flows is employed a time-explicit Taylor-Galerkin scheme. The finite element used is the isoparametric hexahedral with eight nodes. It is used the pseudo-compressibility method to keep the pressure terms in continuity equation, because without these terms there are additional difficulties to obtain the discretizated equations. Regarding the turbulence approach, it is employed the large eddy simulation (LES) and for subgrid-scales is used the classical Smagorinsky model to turbulent viscosity and diffusivity. To minimize the processing time is used explicit integration of element matrix and the multiprocessing technical OpenMP. Results are presented to a wide range of Reynolds, Prandtl and Grashoff numbers for velocity, pressure and temperature fields to laminar and turbulent, bi-dimensional, lid-driven cavity flow and a laminar three-dimensional backward-facing step. Simulations of lid-driven cavity flows in laminar and transitional regimes is compared with others authors results, presenting good agreement, in both transient and permanent regimes. Besides that, the implementation of buoyance forces in the present code improved the results obtained by it. The others simulations are presented like new cases and had qualitatively good behavior.
|
6 |
Incorporation of an energy equation into a pulsed inductive plasma acceleration modelReneau, Jarred Paul 30 April 2011 (has links)
Electric propulsion systems utilize electrical energy to produce thrust for spacecraft propulsion. These systems have multiple applications ranging from Earth orbit North-South station keeping to solar system exploratory missions such as NASA’s Discovery, New Frontiers, and Flagship class missions that focus on exploring scientifically interesting targets. In an electromagnetic thruster, a magnetic field interacting with current in an ionized gas (plasma) accelerates the propellant to produce thrust. Pulsed inductive thrusters rely on an electrodeless discharge where both the magnetic field in the plasma and the plasma current are induced by a time-varying current in an external circuit. The multi-dimensional acceleration model for a pulsed inductive plasma thruster consists of a set of circuit equations describing the electrical behavior of the thruster coupled to a one-dimensional momentum equation that allow for estimating thruster performance. Current models lack a method to account for the time-varying energy distribution in an inductive plasma accelerator.
|
7 |
Descriptors for adamantane and some of its derivativesAbraham, M.H., Acree, W.E. Jr, Liu, Xiangli 15 March 2021 (has links)
Yes / Literature data on solubilities of adamantane in organic solvents have been used to obtain properties, or descriptors, of adamantane. There is much less data on substituted adamantanes but we have been able to obtain descriptors for some 40 substituted adamantanes. These descriptors can then be used to estimate a wide range of physicochemical, environmental and other properties of the adamantanes. For the first time, the water-solvent partition coefficient and the gas-solvent partition coefficient into a large range of solvents, can be estimated, the latter being equivalent to Henry's Law constants. A variety of other important properties can also be estimated. These include vapor pressures, enthalpies of vaporization and sublimation, partitions from air and from blood into biological tissues, and skin permeability from water. The descriptors themselves are not exceptional. Adamantane itself has a rather low dipolarity, zero hydrogen bond acidity and a very low hydrogen bond basicity, in common with other multicyclic aliphatic compounds. These lead to adamantane being a very hydrophobic compound, as is evident from our estimated water-octanol partition coefficient.
|
8 |
The free surface deformation affected by two-dimensional thermocapillary flow irradiated by energy fluxShi, Zong-You 30 August 2012 (has links)
This study focuses ontransient heat flow behavior in which centralizing energy on themetal makes metal surface come to aheat molten state with centralized heat source .
This flow field is two-dimensional transient model, using Phase-field method and Two-phase flow to simulatemetal surface. In this study is under considerations of the mass conservation equation, momentum equation, energy equation and the level-set equation, regardless of the impact due to the concentration diffusion. At last it will show the flow of the molten zone caused by temperature, and the flows in molten zone forced by thermocapillary which is caused byvariation of temperature.
|
9 |
A fast approach for coupled fluid-thermal modeling of the lubricating interfaces of axial piston machinesMukherjee, Swarnava, Shang, Lizhi, Vacca, Andrea 25 June 2020 (has links)
The temperature distribution of the lubricating interfaces is an important aspect of the functioning of positive displacement machines. It can determine the efficiency and the life time of the unit. In particular, it directly affects the fluid properties and the thermal induced deformations of the solid bodies. A simulation tool capable of predicting the fluid temperature in such gaps thus becomes very useful in the design process of these machines. The temperature distribution in a film comprises of many physical phenomena including convection and conduction along and across the film. Past numerical approaches solved this multi-directional conduction-convection problem using a threedimensional(3D) grid, making the tool computationally expensive and unsuitable for fast simulations. This paper proposes a hybrid fluid temperature solver, based on, a low computational cost twodimensional(2D) grid, to reduce the simulation time with reasonable accuracy. The piston/cylinder interface of an axial piston machine is selected as reference case to demonstrate the proposed approach. The hybrid approach was found to speedup the simulation times by 36%.
|
10 |
Modeling, Control and State Estimation of a Roll SimulatorZagorski, Scott B. 17 December 2012 (has links)
No description available.
|
Page generated in 0.1124 seconds