• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of voltage reduction on energy and demand

Matar, Khalil January 1990 (has links)
No description available.
2

Energy: A Resource Booklet for Teachers

de Haan, Robert 04 1900 (has links)
<p> Three chapters comprise this project. The first chapter deals with the global picture of energy supply and demand, and concludes that other sources of energy must be developed in the next fifty years.</p> <p> Chapter Two considers a number of alternate sources of energy and examines two sources in particular: (i) Hydrogen and its dependence on electricity, and (ii) Nuclear energy used to produce electricity. Certainly, Ontario has a very viable option to produce electricity by means of nuclear energy.</p> <p> Home heating can, to some extent, be controlled by the individual, and Chapter Three discusses the operation of a heat pump and its feasibility as a heating device for homes in the Southern Ontario climate.</p> / Thesis / Master of Science (Teaching)
3

The role of user centred design in domestic energy demand reduction

Haines, Victoria January 2014 (has links)
The domestic sector currently accounts for approximately a third of the UK s energy use and so energy demand reduction in the domestic sector is a key part of the UK s strategy for carbon reduction. However, energy demand reduction has typically been addressed from an engineering perspective, with little consideration of the requirements of users. This PhD submission aims to identify how qualitative information about users experiences, values and practices relating to UK domestic energy demand reduction can be collected and presented effectively to an engineering audience and incorporated into engineering-focused energy research. User centred design is presented as a viable approach to understanding the context of energy use in UK homes and specifying requirements of the householders; as a way of ensuring user needs are included in this socio-technical problem space. This requires presentation of information about human behaviour in a form that is timely and appropriate to the engineering audience, who take a positivist view, preferring facts and figures to descriptions and anecdotes. A collection of nine publications, mostly peer-reviewed journal papers, by the thesis author and her co-authors is presented. Publications spanning from 2006 to 2014 illustrate a range of approaches to providing user centred information, from literature review to complex householder studies, which can provide information to enhance the engineering data and so provide additional insight and understanding. The research findings within the individual papers add to the body of knowledge on domestic energy use. In addition, the research identifies a number of roles where user centred design contributes to understanding of home energy use. From providing background and raising awareness of the presence of users within a system, to contextual understanding and the specification of user requirements, through to more sophisticated user characterisation, it is argued that user centred design can offer a significant contribution to the field. Future application of user information into engineering models, together with large scale, longitudinal studies of home energy use are proposed, building on the contributions of this thesis.
4

Electrochemical generation of hydrogen

Syed Khurram, Raza January 2017 (has links)
Global warming and the energy crisis are two of the greatest challenges on which mankind is currently focused. This has forced governments and other organisations to think how to protect the environment and how to reduce fuel costs. A variety of new and exciting technologies are being investigated to address the energy problem. Alternative energy sources such as solar power, fuel cells, wind power and tidal waves are active areas of commercial and scientific pursuit. A major area of current research is moving towards the hydrogen economy and hydrogen based energy systems. Hydrogen can be produced in many ways, most commonly by steam reforming of hydrocarbon (70% to 85% thermal efficiency) but the downside is that it releases carbon mono oxide (CO)), compared with commercial PEM electrolysers where performance has been reported to be 56 -73% at normal temperature pressure(NTP) with zero carbon emission. Electrochemical production of hydrogen has several advantages: (i) It gives pure hydrogen. (ii) It allows portability (e.g. Solar energy could be used to power the electrochemical cell). (iii) It can be produced on demand. The generation of Hydrogen via electrolysis has been the subject of many studies over the last two hundred years. However, there is still room for further work to improve both the efficiency of the process and methods of storage of the gas. The cleanest method at present is to produce hydrogen by electrolysis, and the main focus of this research is to design and develop such a green energy fuel cell for on-demand application. The aim of the work presented in this thesis was to further investigate the electrolysis method for hydrogen production. An Electrochemical fuel cell contains a minimum of two electrodes: the positively charged electrode called the anode where oxygen bubble will form, and the second negatively charged electrode called the cathode, where hydrogen bubbles will form during a chemical reaction caused by applying electrical current between these electrode. The project was initiated with the objective of finding a low cost solution for on-demand hydrogen generation. To establish a starting point, the first cell (cell-1) design was based on the work of Stephen Barrie Chambers (see chapter 3) to check the performance levels. The fabrication of the cell-1 design resulted in a mixture of hydrogen and oxygen in the same chamber, which means the cell-1 design, has a possible fire and explosion hazard. The device also has the drawback of lower performance of hydrogen production; columbic efficiency is between 40% to 46% at 1 amp to 3 amp current in 30% KOH alkaline solution. However, the advantage of reproducing Stephen’s innovation is that it allowed a quick and deep understanding of hydrogen generation. This thesis presents recent work on the fabrication of low cost electrolysis cells containing continuous flow alkaline (KOH, up to 30%) electrolyte using low cost electrodes (stainless steel 316) and membranes based on ultrahigh molecular weight polyethylene (UHMW PE) to produce hydrogen without the hazard of fire and explosion. In this research an On-Demand Hydrogen Generation cell-3 achieved a 95% hydrogen generation coulombic efficiency, which is about 49% efficiency improvement as compared to the stainless steel electrode, and was 22% better than the nano structured electrode. The typical cell voltage is 2.5 V at current flow ranging from 30 to 120 mA cm-2 in 30% KOH electrolyte. The achievement here of such high efficiencies paves the way for more research in the areas of space management, electrode surface structure and flow control (based on the application requirement). This invention can be used for aeronautic, marine and automotive application as well as in many other areas.
5

Comprehensive framework for assessment of the contribution of demand response and electrical energy storage to power system adequacy of supply

Zhou, Yutian January 2016 (has links)
There are presently worldwide targets for decreasing anthropogenic greenhouse gases (GHGs) emissions owing to global climate change concerns. Here in the United Kingdom, the government has committed to reduce its GHGs emissions by at least 80% by 2050 relative to 1990 levels. In order to achieve the ambitious 2050 targets and minimise cumulative emissions along the way, modern power systems are facing a series of great challenges. These challenges include extensive utilisation of renewable generation, diverse demand--side participation in power system operation and planning, as well as considerable application of emerging smart devices and appliances. All of these challenges will significantly increase the complexity of future power systems in terms of both operation and design. Regardless, the primary objective of power systems remains the same. That is the system must supply all the customers (responsive ones and non-responsive ones) with electricity as economically as possible and with an adequate level of continuity and quality. With the widespread utilisation of smart meters and appliances as well as the large-scale installation of different storage technologies, the services that demand response (DR) and electrical energy storage (EES) resources can provide will cover a wide range of ancillary services. More importantly, the grid-scale penetration of DR and EES resources is able to provide energy management and capacity support services, which can be considered as the alternative to generation resources. In this light, considerable amount of research has been done focusing on engaging particular types of electricity users with different kinds of incentives and/or tariff schemes, so that the economic benefits to both utilities and customers are optimised. However, no general framework for systematic assessment of the contribution to power system adequacy of supply from potential grid-scale penetration of DR and EES resources is available up till now, particularly taking specific consideration of DR's flexibility and payback characteristics as well as EES's operational parameters. The research work in this thesis therefore emphasises exclusively on the potential of grid-scale DR and EES resources to serve as alternative resources to electricity generation within the context of power system adequacy of supply. More specifically, based on literature survey of existing studies in similar topics, this thesis has made some substantial contributions and innovations, such as developing novel models of these emerging demand-side resources, implementing a systematic adequacy of supply assessment with new aspect to measure the level of adequacy of supply (new indices), proposing a novel and comprehensive framework for evaluation of the capacity credit of DR and EES, and analysing the economic value based on power system fundamental long--term costs of interruption and supply. Ultimately, this thesis has established a comprehensive framework for assessment of the contribution of DR and EES to power system adequacy of supply. Additionally, the numerical studies carried out in this thesis have enabled the inference of general adequacy of supply implications in terms of deploying DR and EES resources to provide capacity support to power systems.
6

The Russian Federation - the European economy’s future powerhouse? : An Econometric Analysis of the Energy Import Relationship Between Seven European Key Countries and the Russian Federation / Europas Framtida Energileverantör : En ekonometrisk analys av energiimport förhållandet mellan sju europeiska nyckelländer och Ryssland.

Olofsson, Linus, Savelainen, Mikael January 2017 (has links)
The purpose of this thesis is to analyze how the world market price of crude oil, coal and natural gas affects the demand of and dependency on energy imports from the Russian Federation of key European countries[1]. We achieve our objective through econometric estimations of import demand equations concerning imports from the Russian Federation of crude oil, coal and natural gas for seven EU key countries during 1990-2014.Three out of twenty-one models were found to be statistically significant for both the spot price- and income elasticity. The spot price elasticities for the models where: coal import demand for Finland (-0.49), crude oil import demand for Italy (-0.44) and the Netherlands (-0.42). The income elasticities for the aforementioned models were found to be: Finland (2.58), Italy (5.85) and the Netherlands (7.62). The remaining models were statistically insignificant presumably due to different internal structures in the data or due to the assumption of perfect substitute model. [1] EU key countries include: Austria, Finland, France, Germany, Italy, Netherlands, and the United Kingdom. / Syftet med denna uppsats är att analysera hur världsmarknadspriset på råolja, kol och naturgas påverkar den europeiska efterfrågan på och beroendet av energiimport från Ryssland. Ekonometriska uppskattningar av importefterfrågan för råolja, kol och naturgas som produceras av Ryska Federationen för sju EU nyckelländer kommer att produceras. Huvudsyftet är att uppskatta elasticiteter hos importefterfrågan som kännetecknar de handelsförbindelserna mellan Ryssland och sju EU nyckelländerna med avseende på de tre energiresurser.  Tre av tjugoen modeller visade sig vara signifikanta för både världsmarknadspriset och inkomstelasticiteten. Följande variabler och elasticiteter för priset var signifikant; Kol Importefterfrågan för Finland (-0,49), Olje Importefterfrågan för Italien (-0,44) och Nederländerna (-0,42). Inkomstelasticitet för de nämnda modellerna estimeras vara; Finland (2,58), Italien (5,85) och Nederländerna (7,62). Den statistiska insignifikansen hos de övriga modellerna härstamma troligtvis från den interna strukturen på datat eller antagandet om den perfekta substitut modellen
7

Risk Analysis and Pricing of Retail Energy Contracts / Analýza rizik a oceňování energetických retailových kontraktů

Hron, Jiří January 2007 (has links)
The presented dissertation is focused on the applications of statistical methods and ap-proaches applied in the energy business. The need for the modeling of energy risks arose only recently when the energy business was opened to competition. Therefore, the prima-ry aim of the dissertation is to clarify the main principles of the energy business which are necessary for understanding both risk principles and motivation of the proposed models. I am largely focused on retail risks, i.e., the risks associated with delivery to end-consumers. In particular, I deal with energy contracts providing volume flexibility, recalled as swing options in the literature. Therefore, the second issue on which I am focusing is a group of demand-driven swing options whose more systematic analysis in the portfolio context has not been published so far. Examining the risk, I apply the deductive (probabil-istic) analysis which reveals interesting relations between correlations. The practical ap-plications also require inductive considerations resulting in the construction of statistical estimators relying on historical data. I propose an estimator of the volumetric correlation based on a classical theory whose bias is investigated via MC simulation. To analyze a par-ticular volume-price correlation, I introduced the notion of robust dependency. Applying bootstrap procedures, robust dependency can be used both for testing purposes and for sensitivity analysis of the sample correlation. There are many works available devoted to energy price models which are different from the price models applied on financial markets. Therefore, the third target of the dis-sertation is an empirical statistical analysis of both power and natural gas Czech spot pric-es which can serve as a basis for the development of price models adapted to the Czech market environment. Finally, the fourth aim is the evaluation of power contracts which is very specific. The outputs of the model are both a synthetic market price and a hedging strategy. The model is designed to provide flexibility in practical applications.
8

"Domácí elektrárny - dostupnost a ekonomická opodstatněnost technologií pro domácí výrobu elektrické energie pro rodinné domy v ČR / Household power stations - accessibility and economic viability of technologies for household electricity generation in family houses in CR

Zlonický, Jan January 2017 (has links)
This thesis focuses on the question whether it is economically viable to operate a system for household electricity production and if so, what are the necessary conditions to do so. In the text of this thesis a brief summary of environmental protection and sustainable development is presented, followed by the description and current state of technologies needed to construct systems for electricity production in the scale of family houses with focus on photovoltaic systems, and a description of the current legislation and administrative barriers related to this subject. Economic view (costs and return of investment) is examined in relation to multiple conditions, focus of this examination being on the geographical conditions, legislation and administrative conditions, state subsidies, electricity production and consumption profiles in the household and electricity price development scenarios. Technologies for household electricity production are therefore put into the context relevant to the citizens of the Czech Republic. The results of this work show, that the systems for photovoltaic electricity production in family houses in the conditions of the Czech Republic are economically viable with the premise that the surpluses of electricity produced are effectively consumed, for example for water...
9

Ausrichtung der Heizungs-, Klima- und Lüftungstechnik an den Bedürfnissen der Nutzer im Wohnungsbau: Heizen 2020

Wagnitz, Matthias 06 January 2016 (has links)
Planung und Ausführung in der Heizungstechnik gehen von einem idealisierten Nutzer aus, dessen Verhalten und Vorlieben bezüglich dieser Technik in der Regel aber nicht bekannt sind. Heizen 2020 untersucht „den“ Nutzer vor diesem Hintergrund statistisch mittels einer groß angelegten Befragung. Es stellt sich heraus, dass eine Unterteilung der Nutzer in drei Cluster, die sich in ihren Vorlieben deutlich unterscheiden, sinnvoll ist. Aus den Clustern wird ein Auslegungs- und Regelungskonzept entwickelt, das abweichend von der bisherigen Vorgehensweise gezielt Reserven aufbaut, diese aber regeltechnisch auf die tatsächliche Nutzeranforderung reduziert. Darauf basierend werden Hinweise für die Anpassung der Anlagentechnik an den Nutzer gegeben.:1. Einleitung 1.1. Ein Wort zur historischen Entwicklung 1.2. Herleitung der Problemstellung 1.3. Erläuterung der Problemstellung 1.4. Beschreibung der Methodik und des daraus resultierenden Aufbaus 2. Literaturrecherche 2.1. Studien mit vorwiegend technischem Hintergrund 2.1.1. Felduntersuchungen zur Begrenzung des natürlichen und erzwungenen Transmissions- und Lüftungswärmeverbrauchs durch Nutzerinformation sowie durch heiz- und regelungstechnische Maßnahmen 2.1.2. Einfluss des Nutzerverhaltens auf den Energieverbrauch in Niedrigenergie- und Passivhäusern 2.1.3. Offenlegungsschrift DE 196 13 021 A1 – Patentanmeldung Vaillant aus dem Jahr 1996 22 2.1.4. Energieeffizienz und Wirtschaftlichkeit – Investitions- und Nutzungskosten in Wohngebäuden gemeinnütziger Bauvereinigungen unter Berücksichtigung energetischer Aspekte 2.2. Studien mit vorwiegend sozialwissenschaftlichem Hintergrund 2.2.1. (Ältere) Studien aus dem Bereich Passivhaus 2.2.2. Wohnkomfort und Heizwärmeverbrauch im Passivhaus und Niedrigenergiehaus 2.2.3. Introducing the prebound effect: the gap between performance and actual energy consumption 2.2.4. Arbeitsgemeinschaft für zeitgemäßes Bauen 2.2.5. Wohnkonzepte als Hilfsmittel für die dauerhafte Bewirtschaftung von Liegenschaften 2.2.6. Wohnen im ökologischen „Haus der Zukunft“ 2.3. Auswertungen auf Datenbasis der Heizkostenabrechnungen 2.3.1. Reale Raumtemperaturen in Mehrfamilienhäusern und Implikationen für die Einschätzung des Heizenergiebedarfs 2.3.2. Auswirkungen der verbrauchsabhängigen Abrechnung in Abhängigkeit von der energetischen Gebäudequalität 2.4. Auswertungen aus dem Bereich Marketing/Kommunikation 2.4.1. Vaillant Wärmebarometer 2012 2.5. Stand der Normung 2.5.1. DIN EN ISO 7730: Ergonomie der thermischen Umgebung 2.5.2. DIN EN 15251: Eingangsparameter für das Raumklima 2.5.3 Vornormenreihe DIN V 18599 – Energetische Bewertung von Gebäuden 2.5.4. Normenreihe DIN EN 12831 – Verfahren zur Berechnung der Normheizlast 2.5.5. DIN 1946-6: Lüftung von Wohnungen 2.5.6. Überarbeitung der DIN 4708 – Dimensionierung von Trinkwarmwasseranlagen 2.5.7. VDI 6030 Blatt 1 – Auslegung von Raumheizflächen – Grundlagen – Auslegung von Raumheizflächen 2.5.8. Schallschutz in der Normung: Normenreihe DIN 4109 (Entwurf), VDI 2081 und VDI 4100 62 2.5.9. VDI 6003 Trinkwassererwärmungsanlagen 2.6. Zusammenfassung Literaturrecherche 3. Nutzerbefragung allgemein 4. Auswertung – Ableitung von neuen Erkenntnissen 4.1. Erste Beschreibung des Datensatzes 4.1.1. Repräsentativität der Umfrage, Eigentum 4.1.2. Altersverteilung, Wohnkonzepte 4.1.3. Onlinebefragung 4.1.4. Präsenzbefragung 4.1.5. Einstufung Wohnkonzepte 4.2. Allgemeine Auswertungen 4.2.1. Raumtemperatur und Behaglichkeit 4.2.2. Warmwasserkomfort 4.2.3. Luftwechsel und Lüftungsverhalten, CO2 und Luftfeuchte 4.2.4. Regelstrategien des Nutzers zur Raumtemperatur 4.2.5. Beeinflussung des Nutzerverhaltens - allgemein 4.2.6. Nutzerbeeinflussung durch Information 4.2.7. Technische Wünsche 4.2.8. Kühlwunsch 4.2.9. Umwelt, Komfort, Kosten- Treibende Elemente für den Nutzer 4.2.10. Fossile und erneuerbare Energieträger 4.2.11. Paaranalyse, insbesondere Temperatur 4.2.12. Heizkörpergröße und –temperatur (Auslegung) 4.2.13. Wartung der Lüftungstechnischen Anlage 4.2.14. Zu beachtende Randbedingungen für neue Regelungskonzepte vor dem Hintergrund der Einsparung von Heizwärme 4.3. Überprüfung der eingangs aufgestellten Problemstellung 4.4. Clusterbildung 4.4.1. Überprüfung auf offensichtliche Cluster 4.4.2. Finale Clusterbildung 5. Ableitung einer nutzerorientierten Planungsmethodik 5.1. Referenzanlage 5.1.1. Wärmeerzeugung 5.1.2. Wärmeverteilung 5.1.3. Wärmeübergabe 5.1.4. Lüftung 5.1.5. Trinkwassererwärmung 5.1.6. Schulung/Information der Nutzer – Wartung der Anlage 5.2. Aufwertung der Anlagenkonfiguration 5.3. Auslegungskonzept 5.3.1. Auslegung Wärmeerzeuger 5.3.2. Auslegung der Heizflächen 5.3.3. Auslegung hydraulische Komponenten 5.3.4. Auslegung Lüftung 5.4. Regelungskonzept 5.4.1. Nutzerschnittstelle 5.4.2. Vorgaben an die Regelung 5.4.3. Eingaben Fachhandwerkerebene (Erstinstallation) 5.4.4. Folgen der Wahl der jeweiligen Regelstufe durch den Nutzer 5.4.5. Leistungsregelung und Nebenanforderungen 5.5. Anpassung Mehrfamilienhaus 5.6. Anpassung des Auslegungs- und Regelungskonzepts an den Bestand 6. Überprüfung und Fortschreibung der Ergebnisse 6.1. Folgen Energieausweis und Energieberatung/DIN V 18599 6.2. Abschätzung manuelle Heizkurvenverschiebung 6.3. Nutzerwunsch „Duschpanel“ und zukünftiger Verbrauch 6.4. Folgenabschätzung Investition 6.5. Weiterer Forschungsbedarf 6.5.1. Umsetzung in die Praxis 6.5.2. Warmwasserbedarf 6.5.3. Verschattung 6.5.4. Kühlungswunsch 6.5.5. Einfluss von Außenluftdurchlässen auf den Komfort in der Praxis 6.5.6. Dauer der Nachtabsenkung 6.5.7. Art der Tätigkeit und Bekleidung im häuslichen Bereich 6.5.8. Automationskonzept 7. Zusammenfassung und Erarbeitung zielgruppengerechter Empfehlungen 7.1. Allgemeine Zusammenfassung 7.2. Zusammenfassung aus bestimmten Blickwinkeln 7.2.1. Blickwinkel Handwerk 7.2.2. Blickwinkel Normung 7.2.3. Blickwinkel Politik 7.2.4. Blickwinkel Hersteller 7.3. Persönlicher Ausblick 8. Verzeichnisse 8.1. Abbildungsverzeichnis 8.2. Tabellenverzeichnis 8.3. Literaturverzeichnis 9. Anhang 9.1. Dokumentation Vorgehensweise 9.1.1. Beteiligte Personen und Institutionen 9.1.2. Entwicklung Fragebogen 9.1.3. Präsenzumfrage im Detail 9.1.4. Überarbeitung und Korrektur Datensatz Präsenzinterviews vor Auswertung 9.1.5. Dokumentation Datensatz Online 9.1.6. Auslegungsfragen Präsenzumfrage 9.1.7. Verwendete Messgeräte 9.2. Eigene Definitionen und Begrifflichkeiten 9.3. Verwendete statistische Definitionen in der Kurzfassung 9.4. Tabellarische Zusammenfassung des Auslegungs- und Regelungskonzepts bzw. der Referenzanlage 9.4.1. Referenzanlage 9.4.2. Auslegung Wärmeerzeugung und –übergabe 9.4.3. Auslegung Lüftungsanlage 9.4.4. Auslegung Kühlung 9.4.5. Visualisierung Nutzerschnittstelle (Bedienoberfläche Regelung) 9.4.6. Eingaben Fachhandwerkerebene 9.4.7. Vorgaben bei Nutzerwahl „Öko“-Regelstufe 9.4.8. Vorgaben bei Nutzerwahl „Eco“-Regelstufe 9.4.9. Vorgaben bei Nutzerwahl „Komfort“-Regelstufe 9.4.10. Leistungsregelung 9.4.11. Regelungsvorgaben Lüftung 9.4.12. Anpassung Mehrfamilienhaus 9.4.13. Einschränkungen im Bestand 9.5. Belegexemplare 9.5.1. Belegexemplar Fragebogen Präsenzumfrage Liegenschaft 9.5.2. Belegexemplare Fragebogen Präsenzumfrage Bewohner 9.5.3. Belegexemplare Fragebogen Onlineumfrage 9.5.4. Vergleich Online- und Präsenzfragenbogen / Planning and installation in heating technology are based on an idealized user whose behavior and preferences regarding this technology usually are unknown. "Heizen 2020" ("heating technology in the year 2020") examined "the" user against this background statistically by means of a large-scale survey. It turns out that a subdivision of the users into three clusters, which differ significantly in their preferences, is useful. From the clusters a design and control concept is developed that uses - different to the useal planning process - reserves . These reserves are reduced by control technology to the actual user request. Based on the clusters indications for the choice and adaptation of the heating technology are developed.:1. Einleitung 1.1. Ein Wort zur historischen Entwicklung 1.2. Herleitung der Problemstellung 1.3. Erläuterung der Problemstellung 1.4. Beschreibung der Methodik und des daraus resultierenden Aufbaus 2. Literaturrecherche 2.1. Studien mit vorwiegend technischem Hintergrund 2.1.1. Felduntersuchungen zur Begrenzung des natürlichen und erzwungenen Transmissions- und Lüftungswärmeverbrauchs durch Nutzerinformation sowie durch heiz- und regelungstechnische Maßnahmen 2.1.2. Einfluss des Nutzerverhaltens auf den Energieverbrauch in Niedrigenergie- und Passivhäusern 2.1.3. Offenlegungsschrift DE 196 13 021 A1 – Patentanmeldung Vaillant aus dem Jahr 1996 22 2.1.4. Energieeffizienz und Wirtschaftlichkeit – Investitions- und Nutzungskosten in Wohngebäuden gemeinnütziger Bauvereinigungen unter Berücksichtigung energetischer Aspekte 2.2. Studien mit vorwiegend sozialwissenschaftlichem Hintergrund 2.2.1. (Ältere) Studien aus dem Bereich Passivhaus 2.2.2. Wohnkomfort und Heizwärmeverbrauch im Passivhaus und Niedrigenergiehaus 2.2.3. Introducing the prebound effect: the gap between performance and actual energy consumption 2.2.4. Arbeitsgemeinschaft für zeitgemäßes Bauen 2.2.5. Wohnkonzepte als Hilfsmittel für die dauerhafte Bewirtschaftung von Liegenschaften 2.2.6. Wohnen im ökologischen „Haus der Zukunft“ 2.3. Auswertungen auf Datenbasis der Heizkostenabrechnungen 2.3.1. Reale Raumtemperaturen in Mehrfamilienhäusern und Implikationen für die Einschätzung des Heizenergiebedarfs 2.3.2. Auswirkungen der verbrauchsabhängigen Abrechnung in Abhängigkeit von der energetischen Gebäudequalität 2.4. Auswertungen aus dem Bereich Marketing/Kommunikation 2.4.1. Vaillant Wärmebarometer 2012 2.5. Stand der Normung 2.5.1. DIN EN ISO 7730: Ergonomie der thermischen Umgebung 2.5.2. DIN EN 15251: Eingangsparameter für das Raumklima 2.5.3 Vornormenreihe DIN V 18599 – Energetische Bewertung von Gebäuden 2.5.4. Normenreihe DIN EN 12831 – Verfahren zur Berechnung der Normheizlast 2.5.5. DIN 1946-6: Lüftung von Wohnungen 2.5.6. Überarbeitung der DIN 4708 – Dimensionierung von Trinkwarmwasseranlagen 2.5.7. VDI 6030 Blatt 1 – Auslegung von Raumheizflächen – Grundlagen – Auslegung von Raumheizflächen 2.5.8. Schallschutz in der Normung: Normenreihe DIN 4109 (Entwurf), VDI 2081 und VDI 4100 62 2.5.9. VDI 6003 Trinkwassererwärmungsanlagen 2.6. Zusammenfassung Literaturrecherche 3. Nutzerbefragung allgemein 4. Auswertung – Ableitung von neuen Erkenntnissen 4.1. Erste Beschreibung des Datensatzes 4.1.1. Repräsentativität der Umfrage, Eigentum 4.1.2. Altersverteilung, Wohnkonzepte 4.1.3. Onlinebefragung 4.1.4. Präsenzbefragung 4.1.5. Einstufung Wohnkonzepte 4.2. Allgemeine Auswertungen 4.2.1. Raumtemperatur und Behaglichkeit 4.2.2. Warmwasserkomfort 4.2.3. Luftwechsel und Lüftungsverhalten, CO2 und Luftfeuchte 4.2.4. Regelstrategien des Nutzers zur Raumtemperatur 4.2.5. Beeinflussung des Nutzerverhaltens - allgemein 4.2.6. Nutzerbeeinflussung durch Information 4.2.7. Technische Wünsche 4.2.8. Kühlwunsch 4.2.9. Umwelt, Komfort, Kosten- Treibende Elemente für den Nutzer 4.2.10. Fossile und erneuerbare Energieträger 4.2.11. Paaranalyse, insbesondere Temperatur 4.2.12. Heizkörpergröße und –temperatur (Auslegung) 4.2.13. Wartung der Lüftungstechnischen Anlage 4.2.14. Zu beachtende Randbedingungen für neue Regelungskonzepte vor dem Hintergrund der Einsparung von Heizwärme 4.3. Überprüfung der eingangs aufgestellten Problemstellung 4.4. Clusterbildung 4.4.1. Überprüfung auf offensichtliche Cluster 4.4.2. Finale Clusterbildung 5. Ableitung einer nutzerorientierten Planungsmethodik 5.1. Referenzanlage 5.1.1. Wärmeerzeugung 5.1.2. Wärmeverteilung 5.1.3. Wärmeübergabe 5.1.4. Lüftung 5.1.5. Trinkwassererwärmung 5.1.6. Schulung/Information der Nutzer – Wartung der Anlage 5.2. Aufwertung der Anlagenkonfiguration 5.3. Auslegungskonzept 5.3.1. Auslegung Wärmeerzeuger 5.3.2. Auslegung der Heizflächen 5.3.3. Auslegung hydraulische Komponenten 5.3.4. Auslegung Lüftung 5.4. Regelungskonzept 5.4.1. Nutzerschnittstelle 5.4.2. Vorgaben an die Regelung 5.4.3. Eingaben Fachhandwerkerebene (Erstinstallation) 5.4.4. Folgen der Wahl der jeweiligen Regelstufe durch den Nutzer 5.4.5. Leistungsregelung und Nebenanforderungen 5.5. Anpassung Mehrfamilienhaus 5.6. Anpassung des Auslegungs- und Regelungskonzepts an den Bestand 6. Überprüfung und Fortschreibung der Ergebnisse 6.1. Folgen Energieausweis und Energieberatung/DIN V 18599 6.2. Abschätzung manuelle Heizkurvenverschiebung 6.3. Nutzerwunsch „Duschpanel“ und zukünftiger Verbrauch 6.4. Folgenabschätzung Investition 6.5. Weiterer Forschungsbedarf 6.5.1. Umsetzung in die Praxis 6.5.2. Warmwasserbedarf 6.5.3. Verschattung 6.5.4. Kühlungswunsch 6.5.5. Einfluss von Außenluftdurchlässen auf den Komfort in der Praxis 6.5.6. Dauer der Nachtabsenkung 6.5.7. Art der Tätigkeit und Bekleidung im häuslichen Bereich 6.5.8. Automationskonzept 7. Zusammenfassung und Erarbeitung zielgruppengerechter Empfehlungen 7.1. Allgemeine Zusammenfassung 7.2. Zusammenfassung aus bestimmten Blickwinkeln 7.2.1. Blickwinkel Handwerk 7.2.2. Blickwinkel Normung 7.2.3. Blickwinkel Politik 7.2.4. Blickwinkel Hersteller 7.3. Persönlicher Ausblick 8. Verzeichnisse 8.1. Abbildungsverzeichnis 8.2. Tabellenverzeichnis 8.3. Literaturverzeichnis 9. Anhang 9.1. Dokumentation Vorgehensweise 9.1.1. Beteiligte Personen und Institutionen 9.1.2. Entwicklung Fragebogen 9.1.3. Präsenzumfrage im Detail 9.1.4. Überarbeitung und Korrektur Datensatz Präsenzinterviews vor Auswertung 9.1.5. Dokumentation Datensatz Online 9.1.6. Auslegungsfragen Präsenzumfrage 9.1.7. Verwendete Messgeräte 9.2. Eigene Definitionen und Begrifflichkeiten 9.3. Verwendete statistische Definitionen in der Kurzfassung 9.4. Tabellarische Zusammenfassung des Auslegungs- und Regelungskonzepts bzw. der Referenzanlage 9.4.1. Referenzanlage 9.4.2. Auslegung Wärmeerzeugung und –übergabe 9.4.3. Auslegung Lüftungsanlage 9.4.4. Auslegung Kühlung 9.4.5. Visualisierung Nutzerschnittstelle (Bedienoberfläche Regelung) 9.4.6. Eingaben Fachhandwerkerebene 9.4.7. Vorgaben bei Nutzerwahl „Öko“-Regelstufe 9.4.8. Vorgaben bei Nutzerwahl „Eco“-Regelstufe 9.4.9. Vorgaben bei Nutzerwahl „Komfort“-Regelstufe 9.4.10. Leistungsregelung 9.4.11. Regelungsvorgaben Lüftung 9.4.12. Anpassung Mehrfamilienhaus 9.4.13. Einschränkungen im Bestand 9.5. Belegexemplare 9.5.1. Belegexemplar Fragebogen Präsenzumfrage Liegenschaft 9.5.2. Belegexemplare Fragebogen Präsenzumfrage Bewohner 9.5.3. Belegexemplare Fragebogen Onlineumfrage 9.5.4. Vergleich Online- und Präsenzfragenbogen / Planification et l'exécution de la technologie de chauffage sont basées sur un utilisateur idéalisé dont le comportement et les préférences en ce qui concerne cette technologie ne sont généralement pas connus. "Heizen 2020" (technology de chauffage en 2020) a enquêté sur les utilisateurs contre ce contexte statistiquement au moyen d'une enquête à grande échelle. Il se trouve qu'une subdivision des utilisateurs en trois groupes, qui sont diffèrent sensiblement dans leurs préférences, est logique. Basé sur ces groupe un concept de conception et de contrôle est développée. Indépendamment de la procédure précédente ce concept fonctionne avec des réserves dans le processus de planification et l'adaptation à la suite de la demande de l'utilisateur réel en utilisant la technologie de contrôle. Il y a des instructions développées pour sélectionner et ajuster le chauffage à l'utilisateur, sur la base des groupes développés.:1. Einleitung 1.1. Ein Wort zur historischen Entwicklung 1.2. Herleitung der Problemstellung 1.3. Erläuterung der Problemstellung 1.4. Beschreibung der Methodik und des daraus resultierenden Aufbaus 2. Literaturrecherche 2.1. Studien mit vorwiegend technischem Hintergrund 2.1.1. Felduntersuchungen zur Begrenzung des natürlichen und erzwungenen Transmissions- und Lüftungswärmeverbrauchs durch Nutzerinformation sowie durch heiz- und regelungstechnische Maßnahmen 2.1.2. Einfluss des Nutzerverhaltens auf den Energieverbrauch in Niedrigenergie- und Passivhäusern 2.1.3. Offenlegungsschrift DE 196 13 021 A1 – Patentanmeldung Vaillant aus dem Jahr 1996 22 2.1.4. Energieeffizienz und Wirtschaftlichkeit – Investitions- und Nutzungskosten in Wohngebäuden gemeinnütziger Bauvereinigungen unter Berücksichtigung energetischer Aspekte 2.2. Studien mit vorwiegend sozialwissenschaftlichem Hintergrund 2.2.1. (Ältere) Studien aus dem Bereich Passivhaus 2.2.2. Wohnkomfort und Heizwärmeverbrauch im Passivhaus und Niedrigenergiehaus 2.2.3. Introducing the prebound effect: the gap between performance and actual energy consumption 2.2.4. Arbeitsgemeinschaft für zeitgemäßes Bauen 2.2.5. Wohnkonzepte als Hilfsmittel für die dauerhafte Bewirtschaftung von Liegenschaften 2.2.6. Wohnen im ökologischen „Haus der Zukunft“ 2.3. Auswertungen auf Datenbasis der Heizkostenabrechnungen 2.3.1. Reale Raumtemperaturen in Mehrfamilienhäusern und Implikationen für die Einschätzung des Heizenergiebedarfs 2.3.2. Auswirkungen der verbrauchsabhängigen Abrechnung in Abhängigkeit von der energetischen Gebäudequalität 2.4. Auswertungen aus dem Bereich Marketing/Kommunikation 2.4.1. Vaillant Wärmebarometer 2012 2.5. Stand der Normung 2.5.1. DIN EN ISO 7730: Ergonomie der thermischen Umgebung 2.5.2. DIN EN 15251: Eingangsparameter für das Raumklima 2.5.3 Vornormenreihe DIN V 18599 – Energetische Bewertung von Gebäuden 2.5.4. Normenreihe DIN EN 12831 – Verfahren zur Berechnung der Normheizlast 2.5.5. DIN 1946-6: Lüftung von Wohnungen 2.5.6. Überarbeitung der DIN 4708 – Dimensionierung von Trinkwarmwasseranlagen 2.5.7. VDI 6030 Blatt 1 – Auslegung von Raumheizflächen – Grundlagen – Auslegung von Raumheizflächen 2.5.8. Schallschutz in der Normung: Normenreihe DIN 4109 (Entwurf), VDI 2081 und VDI 4100 62 2.5.9. VDI 6003 Trinkwassererwärmungsanlagen 2.6. Zusammenfassung Literaturrecherche 3. Nutzerbefragung allgemein 4. Auswertung – Ableitung von neuen Erkenntnissen 4.1. Erste Beschreibung des Datensatzes 4.1.1. Repräsentativität der Umfrage, Eigentum 4.1.2. Altersverteilung, Wohnkonzepte 4.1.3. Onlinebefragung 4.1.4. Präsenzbefragung 4.1.5. Einstufung Wohnkonzepte 4.2. Allgemeine Auswertungen 4.2.1. Raumtemperatur und Behaglichkeit 4.2.2. Warmwasserkomfort 4.2.3. Luftwechsel und Lüftungsverhalten, CO2 und Luftfeuchte 4.2.4. Regelstrategien des Nutzers zur Raumtemperatur 4.2.5. Beeinflussung des Nutzerverhaltens - allgemein 4.2.6. Nutzerbeeinflussung durch Information 4.2.7. Technische Wünsche 4.2.8. Kühlwunsch 4.2.9. Umwelt, Komfort, Kosten- Treibende Elemente für den Nutzer 4.2.10. Fossile und erneuerbare Energieträger 4.2.11. Paaranalyse, insbesondere Temperatur 4.2.12. Heizkörpergröße und –temperatur (Auslegung) 4.2.13. Wartung der Lüftungstechnischen Anlage 4.2.14. Zu beachtende Randbedingungen für neue Regelungskonzepte vor dem Hintergrund der Einsparung von Heizwärme 4.3. Überprüfung der eingangs aufgestellten Problemstellung 4.4. Clusterbildung 4.4.1. Überprüfung auf offensichtliche Cluster 4.4.2. Finale Clusterbildung 5. Ableitung einer nutzerorientierten Planungsmethodik 5.1. Referenzanlage 5.1.1. Wärmeerzeugung 5.1.2. Wärmeverteilung 5.1.3. Wärmeübergabe 5.1.4. Lüftung 5.1.5. Trinkwassererwärmung 5.1.6. Schulung/Information der Nutzer – Wartung der Anlage 5.2. Aufwertung der Anlagenkonfiguration 5.3. Auslegungskonzept 5.3.1. Auslegung Wärmeerzeuger 5.3.2. Auslegung der Heizflächen 5.3.3. Auslegung hydraulische Komponenten 5.3.4. Auslegung Lüftung 5.4. Regelungskonzept 5.4.1. Nutzerschnittstelle 5.4.2. Vorgaben an die Regelung 5.4.3. Eingaben Fachhandwerkerebene (Erstinstallation) 5.4.4. Folgen der Wahl der jeweiligen Regelstufe durch den Nutzer 5.4.5. Leistungsregelung und Nebenanforderungen 5.5. Anpassung Mehrfamilienhaus 5.6. Anpassung des Auslegungs- und Regelungskonzepts an den Bestand 6. Überprüfung und Fortschreibung der Ergebnisse 6.1. Folgen Energieausweis und Energieberatung/DIN V 18599 6.2. Abschätzung manuelle Heizkurvenverschiebung 6.3. Nutzerwunsch „Duschpanel“ und zukünftiger Verbrauch 6.4. Folgenabschätzung Investition 6.5. Weiterer Forschungsbedarf 6.5.1. Umsetzung in die Praxis 6.5.2. Warmwasserbedarf 6.5.3. Verschattung 6.5.4. Kühlungswunsch 6.5.5. Einfluss von Außenluftdurchlässen auf den Komfort in der Praxis 6.5.6. Dauer der Nachtabsenkung 6.5.7. Art der Tätigkeit und Bekleidung im häuslichen Bereich 6.5.8. Automationskonzept 7. Zusammenfassung und Erarbeitung zielgruppengerechter Empfehlungen 7.1. Allgemeine Zusammenfassung 7.2. Zusammenfassung aus bestimmten Blickwinkeln 7.2.1. Blickwinkel Handwerk 7.2.2. Blickwinkel Normung 7.2.3. Blickwinkel Politik 7.2.4. Blickwinkel Hersteller 7.3. Persönlicher Ausblick 8. Verzeichnisse 8.1. Abbildungsverzeichnis 8.2. Tabellenverzeichnis 8.3. Literaturverzeichnis 9. Anhang 9.1. Dokumentation Vorgehensweise 9.1.1. Beteiligte Personen und Institutionen 9.1.2. Entwicklung Fragebogen 9.1.3. Präsenzumfrage im Detail 9.1.4. Überarbeitung und Korrektur Datensatz Präsenzinterviews vor Auswertung 9.1.5. Dokumentation Datensatz Online 9.1.6. Auslegungsfragen Präsenzumfrage 9.1.7. Verwendete Messgeräte 9.2. Eigene Definitionen und Begrifflichkeiten 9.3. Verwendete statistische Definitionen in der Kurzfassung 9.4. Tabellarische Zusammenfassung des Auslegungs- und Regelungskonzepts bzw. der Referenzanlage 9.4.1. Referenzanlage 9.4.2. Auslegung Wärmeerzeugung und –übergabe 9.4.3. Auslegung Lüftungsanlage 9.4.4. Auslegung Kühlung 9.4.5. Visualisierung Nutzerschnittstelle (Bedienoberfläche Regelung) 9.4.6. Eingaben Fachhandwerkerebene 9.4.7. Vorgaben bei Nutzerwahl „Öko“-Regelstufe 9.4.8. Vorgaben bei Nutzerwahl „Eco“-Regelstufe 9.4.9. Vorgaben bei Nutzerwahl „Komfort“-Regelstufe 9.4.10. Leistungsregelung 9.4.11. Regelungsvorgaben Lüftung 9.4.12. Anpassung Mehrfamilienhaus 9.4.13. Einschränkungen im Bestand 9.5. Belegexemplare 9.5.1. Belegexemplar Fragebogen Präsenzumfrage Liegenschaft 9.5.2. Belegexemplare Fragebogen Präsenzumfrage Bewohner 9.5.3. Belegexemplare Fragebogen Onlineumfrage 9.5.4. Vergleich Online- und Präsenzfragenbogen

Page generated in 0.0738 seconds