Spelling suggestions: "subject:"conergy efficiency renewable energy"" "subject:"conergy efficiency enewable energy""
1 |
Computer simulation of intelligent building facadesWren, Duncan E. January 2000 (has links)
The economic and environmental benefits secured through the increased integration of photovoltaic (PV) technology into the built environment are undeniable and provide the principal motivation for this research. Present delays in the technology transfer of building integrated photovoltaics (BIPV) can be attributed to the following; material cost, performance guarantee, increased installation complexity and unfamiliar technology. It is well understood that the temperature of a PV material receiving solar irradiation, will increase with solar intensity, while reducing in electrical efficiency. It therefore makes economic sense to minimise the increase in PV material temperature and maximise electrical energy yield. Through the addition of a convecting fluid, flowing over the surface of heated PV material, heat transfer will be induced. With the added benefit of warm air capture from an integrated photovoltaic/thermal (PVT) collector, the economic benefits are increased. But, to ensure maximum utilisation of both thermal and electrical energy production, a significantly more complex control system has to be employed than that for a PV system on its own. Modelling the energy flows within a multifunctional PVT building facade presents a problem of considerable complexity. Previous work in this area has centred on performing finite element analysis of the system in order to find solutions to complex algorithms. It requires considerable computational power to perform these calculations and often the results produced are much more detailed than required. Within this thesis, a fully operational PVT facade model is presented, giving the potential for improved multifunctional facade design. This new model has been developed into a software program for use within the TRNSYS environment. By using the TRNSYS software, a detailed building model has been created and integrated with the new PVT facade model. Simulations were then undertaken to evaluate the energy transfers between internal and external environments and the electrical and thermal energy capturing capabilities of the facade. Simulated results have been evaluated against experimental data taken from a fully operational PVT facade. The results conclude that the presented model simulates the energy flows around, through and within the facade (radiative, conductive, convective and electrical) very well. Performance enhancing development work is due to take place on the operational facade analysed in this work, very soon. This new facade model will be used as a tool to evaluate the proposed changes to the building prior to this development work being undertaken.
|
2 |
ENERGY MANAGEMENT STRATEGY FOR SUSTAINABLE REGIONAL DEVELOPMENT / ENERGY MANAGEMENT STRATEGY FOR SUSTAINABLE REGIONAL DEVELOPMENTHrubý, Martin January 2016 (has links)
Energy Management strategy for sustainable regional development has been selected as the topic of my research due to the fact that energy demand alongside with energy dependency have been continuously growing from a long term perspective. Sustainable development is defined by three imperatives – energy efficiency, ecology and security. Review of the current state and analysis of historical trends in Energetics at global and regional level are covered in this research. Results of the Multi-Criteria Decision Analysis introduce a set of implications and recommendations for Energy Management strategy in the Czech Republic.
|
3 |
Exploring the impacts of renewable energy and energy efficiency policies on the mining sectorMsimanga, Bongani 04 1900 (has links)
Thesis (MCom)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Worldwide, energy has been, and continues to be, key to economic development. However, the current global consensus is that energy-related carbon dioxide emissions would, at current rates, put the world onto a potentially catastrophic trajectory which could lead to global warming of 5 degree Celsius or more compared to pre-industrial times. There is a critical need for a low-carbon development or a move away from conventional fossil fuels energy sources.
This study explores impacts of policies that South Africa developed in order to champion sustainable energy strategies based on energy efficiency and non-conventional energy sources, including renewable energy. The mining sector, because of its energy-intensive nature, was chosen. In order to achieve this objective three approaches were carried out: (i) a critical review of literature on energy efficiency (EE) and renewable energy (RE) ; (ii) two case-studies that demonstrate the impacts of the policies; and (iii) action research on a sample of mines using survey questionnaire and interviewing.
The research results show that the need to have security in energy and the need to be competitive and grow revenue are significant in deciding to carry out EE and RE initiatives in the mining sector. The results also show that safety followed by production are the priorities and are accompanied by a range of other demands, such as cost reduction and legislative requirements. It is, therefore, within this context that EE and RE initiative will always be carried out in the mining sector. The research concludes that, under the current market framework, South African EE and RE policies are not as effective as hoped they would be. The research, therefore, recommends that a percentage of the mines’ revenue could be dedicated to EE and RE initiatives. In addition, South Africa needs to come up with a new type of productive endeavour that would lead to less extractive industries, including mines. / AFRIKAANSE OPSOMMING: Energie is, was en sal wereldwyd altyd die sleutel wees tot ekonomiese ontwikkeling. Nieteenstaande, word dit wereldwyd aanvaar dat die huidige energie opwekking se koolstofdioksied vrystelling moontlik kan lei tot aardverwarming van 5 grade Celsius of meer wanneer vergelyk met word met pre-industriële tye. Daar is ‘n kritiese behoefte aan lae koolstofdioksied vrystelling ontwikkelings of ‘n beperking van konvensionele fossielbrandstof energiebronne.
Hierdie studie analiseer die impak van die Suid Afrikaanse beleid wat ontwikkel is om volhoubare energie te bevorder wat effektief en onkonvensioneel is, insluitend hernubare energie. Die mynsektor, as ‘n groot verbruiker van energie, vorm die kern van die studie. Die studie is voltooi in drie fases naamlik: (1) kritiese oorsig van die literatuur oor energiedoeltreffendheid (EE) en hernubare energie (RE); (2) twee gevallestudies wat die impak van die beleid bevestig; en (3) praktiese navorsing deur middel van vraelyste en persoonlike onderhoude met seker myne.
Die navorsing bevestig dat die behoefte aan bestendige energie teen kompeterende pryse wat die mynsektor in staat stel om inkomste te groei ,‘n beduidende invloed het op die besluit om EE of RE inisiatiewe te onderneem. Die resultate bevestig verder dat beroepsveiligheid en produksie uitsette die eerste prioriteite vir die myne is. Dit word verder beinvloed deur kostebesparings en wetlike vereistes. Enige EE en RE inisiatiewe wat onderneem word sal in hierdie konteks plaasvind. Die navorsing kom tot die slotsom dat, onder huidige marktoestande, Suid Afrika se EE en RE beleid nie so effektief is as waarop daar gehoop is nie. Die navorsing beveel derhalwe aan dat ‘n persentasie van myne se inkomste geoormerk moet word vir EE en RE inisiatiewe. Verder meer , Suid Afrika moet strewe na tipes produksie wat minder natuurlike grondstowwe onttrek, insluitend die myne.
|
4 |
Dynamic Modeling and Verification of an Energy-Efficient Greenhouse With an Aquaponic System Using TRNSYSAmin, Majdi Talal January 2015 (has links)
No description available.
|
Page generated in 0.0778 seconds