Spelling suggestions: "subject:"conergy efficient routing"" "subject:"coenergy efficient routing""
1 |
Design study of energy-efficient routing protocol for wireless sensor networks.Lu, Lifang January 2009 (has links)
Recent advances in wireless sensor networks have led to an emergence of many routing protocols. Limited battery capacity of sensor nodes makes energy efficiency a major and challenge problem in wireless sensor networks. Thus, the routing protocols for wireless sensor networks must be energy efficient in order to maximise the network lifetime. In this thesis, we developed a centralised clustering, energy-efficient routing protocol for wireless sensor networks. Our protocol consists of a cluster head selection algorithm, a cluster formation scheme and a routing algorithm for the data transmission between cluster heads and the base station. The cluster head selection algorithm is performed by the base station using global information of the network. This algorithm aiming at choosing cluster heads that ensure both the intra-cluster data transmission and inter-cluster data transmission are energy-efficient. The cluster formation scheme is accomplished by exchanging messages between non-cluster-head nodes and the cluster head to ensure a balanced energy load among cluster heads. The routing algorithm is based on the optimal transmission range for the data transmission between cluster heads and the base station using multi-hop. The performance of our routing protocol is evaluated by comparing with three existing routing protocols on a simulation platform. The simulation results show that our protocol can achieve better performance in terms of energy efficiency and network lifetime. Because of the centralised algorithm and multi-hop routing, there is a small communication overhead and transmission delay when using our protocol. Since our protocol can save energy and prolong network lifetime, it is well suited for applications where energy and network lifetime are the primary considerations and small overhead and time delay can be tolerated. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1456494 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Electrical and Electronic Engineering, 2009
|
2 |
Energy-Efficient Routing for Greenhouse Monitoring Using Heterogeneous Sensor NetworksBehera, Trupti Mayee, Khan, Mohammad S., Mohapatra, Sushanta Kumar, Samail, Umesh Chandra, Bhuiyan, Md Zakirul Alam 01 July 2019 (has links)
A suitable environment for the growth of plants is the Greenhouse, that needs to be monitored by a continuous collection of data related to temperature, carbon dioxide concentration, humidity, illumination intensity using sensors, preferably in a wireless sensor network (WSN). Demand initiates various challenges for diversified applications of WSN in the field of IoT (Internet of Things). Network design in IoT based WSN faces challenges like limited energy capacity, hardware resources, and unreliable environment. Issues like cost and complexity can be limited by using sensors that are heterogeneous in nature. Since replacing or recharging of nodes in action is not possible, heterogeneity in terms of energy can overcome crucial issues like energy and lifetime. In this paper, an energy efficient routing process is discussed that considers three different sensor node categories namely normal, intermediate and advanced nodes. Also, the basic cluster head (CH) selection threshold value is modified considering important parameters like initial and residual energy with an optimum number of CHs in the network. When compared with routing algorithms like LEACH (Low Energy Adaptive Clustering Hierarchy) and SEP (Stable Election Protocol), the proposed model performs better for metrics like throughput, network stability and network lifetime for various scenarios.
|
3 |
Multihop clustering algorithm for load balancing in wireless sensor networksIsrar, Nauman, Awan, Irfan U. January 2007 (has links)
Yes / The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach.
|
4 |
Secure Routing in Intelligent Device-to-Device CommunicationsElsemary, Hadeer 16 September 2016 (has links)
No description available.
|
5 |
Energy Optimal Routing of Vehicle Fleet with Heterogeneous PowertrainsArasu, Mukilan T. January 2019 (has links)
No description available.
|
6 |
Energy efficiency in wireless ad hoc and sensor networks: routing, node activity scheduling and cross-layeringMahfoudh, Saoucene 20 January 2010 (has links) (PDF)
In this thesis, we consider wireless ad hoc and sensor networks where energy matters. Indeed, sensor nodes are characterized by a small size, a low cost, an advanced communication technology, but also a limited amount of energy. This energy can be very expensive, difficult or even impossible to renew. Energy efficient strategies are required in such networks to maximize network lifetime. We distinguish four categories of strategies: 1. Energy efficient routing, 2. Node activity scheduling, 3. Topology control by tuning node transmission power and 4. Reduction of the volume of information transferred. Our contribution deals with energy efficient routing and node activity scheduling. For energy efficient routing, the idea consists in reducing the energy spent in the transmission of a packet from its source to its destination, while avoiding nodes with low residual energy. The solution we propose, called EOLSR, is based on the link state OLSR routing protocol. We show by simulation that this solution outperforms the solution that selects routes minimizing the end-to-end energy consumption, as well as the solution that builds routes based on node residual energy. We then show how we can improve the benefit of energy efficient routing using cross layering. Informa- tion provided by the MAC layer improves the reactivity of the routing protocol and the robustness of routes. Moreover, taking into account the specificities of some applications like data gathering allows the routing protocol to reduce its overhead by maintaining routes only to the sink nodes. Concerning node activity scheduling, since the sleep state is the least power consuming state, our aim is to schedule node state between sleeping and active to minimize energy consumption while ensuring network and application functionalities. We propose a solution, called SERENA, based on node coloring. The idea is to assign a color to each node, while using a small number of colors and ensuring that two nodes with the same color can transmit without interfering. This color is mapped into a slot in which the node can transmit its messages. Consequently, each node is awake during its slot and the slots granted to its one-hop neighbors. It sleeps the remaining time. We show how this algorithm can adapt to different application requirements: broadcast, immediate acknowledgement of unicast transmissions... The impact of each additional requirement is evaluated by simulation. An originality of this work lies in taking into account real wireless propagation conditions. Color conflicts are then possible. A cross-layering approach with the MAC layer is used to solve these conflicts. We also show how cross-layering with the application layer can improve the coloring per- formance for data gathering applications. This work has been done for the ANR OCARI project whose aim is to design and implement a wireless sensor network for applications in harsh environments such as power plants and war- ships. The network layer including SERENA and EOLSR has been specified and is now under implementation.
|
Page generated in 0.0721 seconds