• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 2
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Surface Energy Budget Over A Land Surface In The Tropics

Arunchandra, S C 04 1900 (has links)
Atmospheric convection is sensitive to the nature of the surface and its temperature. Both dry (without cloud) and moist (with cloud) convections depend on the surface temperature. Surface temperature is of critical importance in several practical applications like human comfort and crop cultivation. In the climate change scenario too, variations in the surface temperature take the center stage. Therefore, prediction of surface temperature is important. The evolution of the temperature is governed by the energy equation and the surface temperature by the surface energy balance. Important components of the surface energy balance are radiation (incoming solar radiation, reflected solar radiation, incoming and outgoing longwave radiation), sensible and latent heat fluxes and heat flux into the ground (called ground heat flux). A large number of individual and collective observations have been carried out in the past to understand the atmospheric boundary layer and the surface energy budgets. However a major share of the observations is from mid-latitudes. There have been few experiments carried out in India, for example, MONTBLEX, LASPEX, etc. One common drawback among these experiments is that the data time series is discontinuous and continuous measurements covering an entire season are lacking. Moreover these measurements were not comprehensive and hence did not allowed to calculate complete surface energy balance – in some cases radiation data is not available while in some humidity data. Therefore, continuous time series of sufficient duration and covering all variables needed to look at the seasonal energy balance based on measurements alone is missing in the Indian context. New programmes with the main objective of predicting convection are being planned in India. For example, PROWNAM (Prediction of Regional Weather with Observational Meso-Network and Atmospheric Modeling) is aimed at predicting the short term weather at SHAR and STORM (Severe Thunderstorms – Observations and Regional Modeling) aims to predict the occurrence of severe thunderstorms in the northeastern India. In both these programmes, measurement of all components of surface energy balance is one of the main objectives. However, the minimum configuration and data accuracy requirements for the flux towers, sensitivity of computed fluxes on data accuracy have not been carefully evaluated. This thesis is aimed at filling this gap. As a part of my work, a 10 m high micrometeorological tower was installed in an open area within the Indian Institute of Science (IISc) Air Field. Temperature, relative humidity and wind speed and direction instruments were mounted at two levels, 2 m and 8 m. All components of radiation were measured. Data, sampled every 5 s and averaged for 2 minutes were continuously stored, starting May 2006 onwards. Soil temperature was measured at 4 depths, 5 cm, 10 cm, 15 cm and 20 cm. In addition, a sonic anemometer capable of measuring 3 components of velocity and air temperature was installed at 2 m height, and data was collected for more than a month to enable the calculation of momentum and buoyancy fluxes using the Eddy correlation method (ECM). The present work evaluated the sensitivity of the fluxes for small calibration errors and quantified the minimum data accuracies and configuration needed for flux measurement with the Profile method (PM). After applying corrections, the comparison of fluxes from PM and ECM are in good agreement. The complete long-term surface energy balances is calculated in terms of source and sink. One aspect that emerges from the observation is that the seasonal variation in the sink term is relatively small (150-170 Wm-2) whereas the source term shows much larger variation from 180-250 Wm-2. A method has been implemented by which the ground surface temperature can be estimated by using the subsurface temperature timeseries by the method of Fourier decomposition and using the Fourier heat conduction equation. In addition we can compute the thermal diffusivity of the soil by using the amplitude and phase information of the sub-surface soil time series. The estimated temperatures from this method and one that estimated from radiation method are in good agreement with the maximum difference being less than 0º C.
12

Turbulent Fluxes of CO2, H2O and Energy in the Atmospheric Boundary Layer above Tropical Vegetation investigated by Eddy-Covariance Measurements / Turbulente Flüsse von CO2, H2O und Energie in der Atmosphärischen Grenzschicht untersucht mittels Eddy-Kovarianz Messungen

Falk, Ulrike 20 February 2004 (has links)
No description available.
13

Vliv různých typů krajinného pokryvu na fyzikální parametry povrchu krajiny / Impact of different types of land cover on physical parameters of landscape surface

KUNTZMAN, Jan January 2018 (has links)
The aim of the thesis was understanding the energy fluxes in different types of land cover. The area of interest is located in Novohradské hory in the basins of Váčkový and Pasecký potok. On a relatively small area there are five different types of land cover to be found (field, forest, permanent grassland, wetland and built-up area). For each of the types of land cover three properties of the surface were calculated: amount of vegetation on the surface, wetness of the surface and surface temperature. Moreover, soil heat flux, latent heat flux and sensible heat flux were established therefore surface thermal balance was evaluated. Results were statistically processed with boxplot diagrams as an outcome. The results support the hypothesis of vegetation having a positive effect on microclimate conditions. Especially the permanent cultures (wetlands, permanent grassland, forest) demonstrated much larger microclimatic stability and balance as well as capability of keeping moist. Thanks to insufficient intensity of vaporization (due to lack of water), built-up areas showed higher surface temperatures and sensible heat flux at most of the cases. Vegetation is capable of holding water and redistributing it in an environment via evapotranspiration. Thus, solar energy is stored inside of the water vapour which condensates on cool objects releasing the energy spent during the vaporization process. Water moves in the landscape through the local-scale water cycle stabilizing the microclimate.
14

Modelling Evapotranspiration from Satellite Data using semi-empirical Models : Applications to the Indian Subcontinent

Eswar, R January 2017 (has links) (PDF)
The major aim of this work is to develop a framework for the estimation of Evapotranspiration (ET) over the Indian landmass using remote sensing (RS) datasets in a repeated and consistent manner with improved spatial resolution. Different RS based ET models exist in the literature, out of which, the triangle, the S-SEBI and the Sim-ReSET models were compared for the estimation of daytime integrated latent heat flux (λEday). These three models were chosen as they can be driven only with RS based inputs without the need for any ground measurements. The results showed that the application of simpler contextual models may yield better results than physically based models when ground data is limited or not available. To improve the spatial resolution of one of the key surface variable, Land Surface Temperature (LST), the performance of five different vegetation indices Normalised Difference Vegetation Index (NDVI), Fraction Vegetation Cover (FVC), Normalised Difference Water Index (NDWI), Soil Adjusted Vegetation Index (SAVI) and Modified SAVI (MSAVI) were tested in the existing DisTrad disaggregation model. Results suggested that the most commonly used vegetation indices NDVI and FVC yielded better results only under wet conditions. Under drier surface conditions, using NDWI for disaggregation resulted in relatively higher accurate LST. A model for spatial disaggregation of Evaporative Fraction (EF) called DEFrac (Disaggregation of Evaporative Fraction) was developed based on the relationship between EF and NDVI to obtain finer spatial resolution EF from coarser resolution estimates. The experimental results suggested that the DEFrac model developed in this study, yielded more accurate disaggregated EF. The disaggregated EF was further used to get disaggregated λEday. Finally, The issue of lack of proper ET dataset over India was addressed by developing two data products one over entire India at 0.05° spatial resolution and the second product over the Kabini basin at 1 km spatial resolution. Both the products were developed with a temporal resolution of 8-day and for the period 2001–2014. The developed ET products were validated against ground observed data at seven sites across India and against ET simulated by a hydrological model over a forested watershed. Further the developed ET products were compared with some other global ET products such as MOD16, LandFlux Eval synthesis ET and GLEAM ET. Analyses revealed that only in regions where ET is predominantly driven by rainfall and where irrigation is not applied at very large scales, the global ET products tend to capture the ET patterns satisfactorily. On the other hand, the ET products developed in this work captured the spatial and temporal patterns of ET quite realistically all across India.
15

CALIBRAÇÃO DO MODELO SIB2 PARA O CERRADO NO SUDESTE DO BRASIL. / CALIBRATION OF THE MODEL SIB2 TO THE SAVANNAH IN SOUTHEASTERN BRAZIL.

Valdés, Roilan Hernández 15 July 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The land surface models (LSM) are the component of the numerical weather prediction and climate models that represents the processes of interaction between the biosphere and atmosphere. The need to improve the representation of bio-geophysical process stimulated the development of sophisticated parametrization. This development increased the complexity of LSMs and the number of parameters involved. Some of these parameters can be measured, but it does not ensure that the best results will be produced. Therefore, a general strategy is to use field experiments (local) to calibrate these parameters for different vegetation types, minimizing the differences between the simulated and observed value(s) of variable(s) of interest. LSMs are usually calibrated using observation of the sensible (H) and latent (LE) heat flux . Studies including soil moisture (�) in the calibration are less frequent (or restricted to the surface layer), but in forest ecosystems, under seasonal water stress, vertical soil moisture profile in vadose zone is essential for simulating transpiration, CO2 assimilation and the partition between the surface and underground flows. This paper describes the calibration of the Simple Biosphere Model (SiB2) for the Cerrado sensu-stricto, using flux measurements, soil moisture and atmospheric forcings collected in a micrometeorological tower located in Gleba Pé de Gigante, SP, in the period July 2009 to July 2012. For calibration, the SiB2 model was separated into modules that included the radiative, aerodynamic and finally, soil water processes and conductance and photosynthesis. The multi-objective calibration algorithm AMALGAM was applied to each of these modules using as objective functions: the mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), the error of amplitude of the mean cycle annual (ACAM) or hourly (ACH). The calibrated variables were: albedo PAR (�PAR), global albedo (�), friction velocity (u�), net radiation (Rn), latent and sensible heat flux and total water storage (Az) up to two meters deep. Nonetheless, the modular calibration was compared with a global calibration in which only variables LE, H and Az were optimized. The calibration for radiative module allowed to reproduce the seasonal cycle and amplitude for albedo PAR, while the global albedo was lagged temporally and a slightly smaller amplitude than the observation but had considerable improvement compared with that simulated with the original parameters. The balance of radiation was reasonably simulated, with overestimation in winter and spring and it proved to be fundamentally sensitive to downward longwave radiation. The u� was slightly underestimated in the average daily cycle against to observed but had less error than the original parameters. On the other hand, the model discretization in three soil layers failed to represent the hydrological processes in the soil and surface simultaneously for Cerrado. Therefore, the soil structure was changed by introducing vertical root distribution profile, the process of hydraulic redistribution and updating the Green-Ampt infiltration scheme. These schemes were essential to the modeling of hydrologic processes of Cerrado vegetation, which is applicable to other deep root system. The global calibration fairly represented LE, H and Az, but resulted in �PAR anti-correlated, considerable underestimation of the � and u�, also in inconsistent partition for evapotranspiration components. / Os modelos da superfície terrestre (LSMs) são a componente dos modelos numéricos de previsão numérica do tempo e clima que representam os processos de interação entre a biosfera e atmosfera. A necessidade de aperfeiçoar a representação dos processos biogeofísicos estimulou o desenvolvimento de sofisticadas parametrizações, aumentando a complexidade dos LSMs e o número de parâmetros. Alguns desses parâmetros podem ser medidos, mas isso não assegura que melhores resultados serão produzidos devido a erros de amostragem e representatividade das condições experimentais (variabilidade espacial, vertical e a heterogeneidade de superfície). Portanto, uma estratégia geral é usar experimentos de campo (locais) para calibrar esses parâmetros para diferentes tipos de vegetação, minimizando as diferenças entre os valores simulados e observados da(s) variável( is) de interesse. LSMs são geralmente calibrados usando observações dos fluxos de calor sensível (H) e latente (LE). Enquanto estudos que incluam a umidade do solo (�) na calibração são menos frequentes (ou restritos a camada superficial do solo), mas em ecossistemas florestais sujeitos a estresse hídrico sazonal (zona radicular profunda, heterogeneidade vertical) o perfil vertical da umidade do solo na zona vadosa é essencial para simulação da transpiração, assimilação de CO2 e a partição entre os escoamentos superficial e subterrâneo. Esta dissertação descreve a calibração do modelo Simples da Biosfera (SiB2) para o Cerrado sensu-stricto, utilizando medidas de fluxos, umidade do solo e forçantes atmosféricas coletadas em uma torre micrometeorológica localizada na Gleba Pé de Gigante, SP, no período de Julho de 2009 até Julho de 2012. Para a calibração, o modelo SiB2 foi separado em módulos que incluíram os processos radiativos, aerodinâmicos e por último os processos hídricos e de condutância e fotossínteses. O algoritmo de calibração multiobjetivo AMALGAM foi aplicado a cada um desses módulos utilizando nas funções objetivo a raiz do erro quadrático médio (RMSE), eficiência de Nash-Sutcliffe (NSE), erro da amplitude do ciclo médio anual (ACAM) ou horário (ACH). As variáveis calibradas foram: albedo PAR (�PAR), albedo global (�), velocidade de fricção (u�), saldo de radiação (Rn), fluxo de calor latente e sensível e armazenamento total de água (Az) até dois metros de profundidade. No entanto, a calibração por módulos foi comparada com uma calibração global na qual somente foram otimizadas as variáveis LE, H e Az. A calibração do módulo radiativo permitiu reproduzir o ciclo sazonal e amplitude do albedo PAR, enquanto o albedo global ficou defasado temporalmente e com amplitude levemente menor que a observação, porém teve razoável melhora quando comparado com o simulado com os parâmetros originais. O saldo de radiação foi razoavelmente simulado, apresentando superestimativa no inverno e primavera e mostrou-se sensível fundamentalmente à parametrização de radiação de onda longa incidente. Enquanto a u� subestimou levemente o ciclo médio diário observado mas teve erro menor que a configuração original. Por outro lado, a discretização de três camadas do solo do modelo não conseguiu representar os processos hidrológicos no solo e superfície simultaneamente do Cerrado. Mudou-se, portanto, a estrutura de solo, introduzindo o perfil vertical de distribuição de raízes, o processo de redistribuição hidráulica e a atualização do esquema de infiltração Green-Ampt. Estes esquemas foram fundamentais para a modelagem dos processos hidrológicos da vegetação Cerrado, o que é aplicável a outras de sistema radicular profundo. A calibração global representou razoavelmente LE, H e Az, porém resultou em �PAR anti-correlacionado, subestimativa considerável do � e u�, além de partição inconsistente nas componentes da evapotranspiração.
16

Développement de modèles physiques pour comprendre la croissance des plantes en environnement de gravité réduite pour des apllications dans les systèmes support-vie / Developing physical models to understand the growth of plants in reduced gravity environments for applications in life-support systems

Poulet, Lucie 11 July 2018 (has links)
Les challenges posés par les missions d’exploration du système solaire sont très différents de ceux de la Station Spatiale Internationale, puisque les distances sont beaucoup plus importantes, limitant la possibilité de ravitaillements réguliers. Les systèmes support-vie basés sur des plantes supérieures et des micro-organismes, comme le projet de l’Agence Spatiale Européenne (ESA) MELiSSA (Micro Ecological Life Support System Alternative) permettront aux équipages d’être autonomes en termes de production de nourriture, revitalisation de l’air et de recyclage d’eau, tout en fermant les cycles de l’eau, de l’oxygène, de l’azote et du carbone, pendant les missions longue durée, et deviendront donc essentiels.La croissance et le développement des plantes et autres organismes biologiques sont fortement influencés par les conditions environnementales (par exemple la gravité, la pression, la température, l’humidité relative, les pressions partielles en O2 et CO2). Pour prédire la croissance des plantes dans ces conditions non-standard, il est crucial de développer des modèles de croissance mécanistiques, permettant une étude multi-échelle des différents phénomènes, ainsi que d’acquérir une compréhension approfondie de tous les processus impliqués dans le développement des plantes en environnement de gravité réduite et d’identifier les lacunes de connaissance.En particulier, les échanges gazeux à la surface de la feuille sont altérés en gravité réduite, ce qui pourrait diminuer la croissance des plantes dans l’espace. Ainsi, nous avons étudié les relations complexes entre convection forcée, niveau de gravité et production de biomasse et avons trouvé que l’inclusion de la gravité comme paramètre dans les modèles d’échanges gazeux des plantes nécessite une description précise des transferts de matière et d’énergie dans la couche limite. Nous avons ajouté un bilan d’énergie au bilan de masse du modèle de croissance de plante déjà existant et cela a ajouté des variations temporelles sur la température de surface des feuilles.Cette variable peut être mesurée à l’aide de caméras infra-rouges et nous avons réalisé une expérience en vol parabolique et cela nous a permis de valider des modèles de transferts gazeux locaux en 0g et 2g, sans ventilation.Enfin, le transport de sève, la croissance racinaire et la sénescence des feuilles doivent être étudiés en conditions de gravité réduite. Cela permettrait de lier notre modèle d’échanges gazeux à la morphologie des plantes et aux allocations de ressources dans une plante et ainsi arriver à un modèle mécanistique complet de la croissance des plantes en environnement de gravité réduite. / Challenges triggered by human space exploration of the solar system are different from those of the International Space Station because distances and time frames are of a different scale, preventing frequent resupplies. Bioregenerative life-support systems based on higher plants and microorganisms, such as the ESA Micro-Ecological Life Support System Alternative (MELiSSA) project will enable crews to be autonomous in food production, air revitalization, and water recycling, while closing cycles for water, oxygen, nitrogen, and carbon, during long-duration missions and will thus become necessary.The growth and development of higher plants and other biological organisms are strongly influenced by environmental conditions (e.g. gravity, pressure, temperature, relative humidity, partial pressure of O2 or CO2). To predict plant growth in these non-standard conditions, it is crucial to develop mechanistic models of plant growth, enabling multi-scale study of different phenomena, as well as gaining thorough understanding on all processes involved in plant development in low gravity environment and identifying knowledge gaps.Especially gas exchanges at the leaf surface are altered in reduced gravity, which could reduce plant growth in space. Thus, we studied the intricate relationships between forced convection, gravity levels and biomass production and found that the inclusion of gravity as a parameter in plant gas exchanges models requires accurate mass and heat transfer descriptions in the boundary layer. We introduced an energy coupling to the already existing mass balance model of plant growth and this introduced time-dependent variations of the leaf surface temperature.This variable can be measured using infra-red cameras and we implemented a parabolic flight experiment, which enabled us to validate local gas transfer models in 0g and 2g without ventilation.Finally, sap transport needs to be studied in reduced gravity environments, along with root absorption and leaf senescence. This would enable to link our gas exchanges model to plant morphology and resources allocations, and achieve a complete mechanistic model of plant growth in low gravity environments.

Page generated in 0.0268 seconds