• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage

Peng, Dan 11 September 2013 (has links)
Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility of power grid operations. Underground storage of hydrogen with natural gas (UHNG) is proposed as a new energy storage technology, to be considered for utility-scale energy storage applications. UHNG is a composite technology: using electrolyzers to convert electrical energy to chemical energy in the form of hydrogen. The latter is then injected along with natural gas into existing gas distribution and storage facilities. The energy stored as hydrogen is recovered as needed; as hydrogen for industrial and transportation applications, as electricity to serve power demand, or as hydrogen-enriched natural gas to serve gas demand. The storage of electrical energy in gaseous form is also termed “Power to Gas”. Such large scale electrical energy storage is desirable to baseload generators operators, renewable energy-based generator operators, independent system operators, and natural gas distribution utilities. Due to the low density of hydrogen, the hydrogen-natural gas mixture thus formed has lower volumetric energy content than conventional natural gas. But, compared to the combustion of conventional natural gas, to provide the same amount of energy, the hydrogen-enriched mixture emits less carbon dioxide. This thesis investigates the dynamic behaviour, financial and environmental performance of UHNG through scenario-based simulation. A proposed energy hub embodying the UHNG principle, located in Southwestern Ontario, is modeled in the MATLAB/Simulink environment. Then, the performance of UHNG for four different scenarios are assessed: injection of hydrogen for long term energy storage, surplus baseload generation load shifting, wind power integration and supplying large hydrogen demand. For each scenario, the configuration of the energy hub, its scale of operation and operating strategy are selected to match the application involved. All four scenarios are compared to the base case scenario, which simulates the operations of a conventional underground gas storage facility. For all scenarios in which hydrogen production and storage is not prioritized, the concentration of hydrogen in the storage reservoir is shown to remain lower than 7% for the first three years of operation. The simulation results also suggest that, of the five scenarios, hydrogen injection followed by recovery of hydrogen-enriched natural gas is the most likely energy recovery pathway in the near future. For this particular scenario, it was also found that it is not profitable to sell the hydrogen-enriched natural gas at the same price as regular natural gas. For the range of scenarios evaluated, a list of benchmark parameters has been established for the UHNG technology. With a roundtrip efficiency of 39%, rated capacity ranging from 25,000 MWh to 582,000 MWh and rated power from 1 to 100 MW, UHNG is an energy storage technology suitable for large storage capacity, low to medium power rating storage applications.
2

Analysis of a Clean Energy Hub Interfaced with a Fleet of Plug-in Fuel Cell Vehicles

Syed, Faraz January 2011 (has links)
The ‘hydrogen economy’ represents an energy system in which hydrogen and electricity are the dominant energy carriers for use in transportation applications. The ‘hydrogen economy’ minimizes the use of fossil fuels in order to lower the environmental impact of energy use associated with urban air pollution and climate change. An integrated energy system is required to deal with diverse and distributed energy generation technologies such a wind and solar which require energy storage to level energy availability and demand. A distributed ‘energy hub’ is considered a viable concept in envisioning the structure of an integrated energy system. An energy hub is a system which consists of energy input/output, conversion and storage technologies for multiple energy carriers, and would provide an interface between energy producers, consumers, and the transportation infrastructure. Considered in a decentralized network, these hubs would form the nodes of an integrated energy system or network. In this work, a model of a clean energy hub comprising of wind turbines, electrolyzers, hydrogen storage, a commercial building, and a fleet of plug-in fuel cell vehicles (PFCVs) was developed in MATLAB, with electricity and hydrogen used as the energy carriers. This model represents a hypothetical commercial facility which is powered by a renewable energy source and utilizes a zero-emissions fleet of light duty vehicles. The models developed herein capture the energy and cost interactions between the various energy components, and also calculate the CO2 emissions avoided through the implementation of hydrogen economy principles. Wherever possible, similar models were used to inform the development of the clean energy hub model. The purpose of the modelling was to investigate the interactions between a single energy hub and novel components such as a plug-in fuel cell vehicle fleet (PFCV). The final model reports four key results: price of hub electricity, price of hub hydrogen, total annual costs and CO2 emissions avoided. Three scenarios were analysed: minimizing price of hub electricity, minimizing total annual costs, and maximizing the CO2 emissions avoided. Since the clean energy hub could feasibly represent both a facility located within an urban area as well as a remote facility, two separate analyses were also conducted: an on-grid analysis (if the energy hub is close to transmission lines), and an off-grid analysis (representing the remote scenarios). The connection of the energy hub to the broader electricity grid was the most significant factor affecting the results collected. Grid electricity was found to be generally cheaper than electricity produced by wind turbines, and scenarios for minimizing costs heavily favoured the use grid electricity. However, wind turbines were found to avoid CO2 emissions over the use of grid electricity, and scenarios for maximizing emissions avoided heavily favoured wind turbine electricity. In one case, removing the grid connection resulted in the price of electricity from the energy hub increasing from $82/MWh to $300/MWh. The mean travel distance of the fleet was another important factor affecting the cost modelling of the energy hub. The hub’s performance was simulated over a range of mean travel distances (20km to 100km), and the results varied greatly within the range. This is because the mean travel distance directly affects the quantities of electricity and hydrogen consumed by the fleet, a large consumer of energy within the hub. Other factors, such as the output of the wind turbines, or the consumption of the commercial building, are largely fixed. A key sensitivity was discovered within this range; the results were ‘better’ (lower costs and higher emissions avoided) when the mean travel distance exceeded the electric travel range of the fleet. This effect was more noticeable in the on-grid analysis. This sensitivity is due to the underutilization of the hydrogen systems within the hub at lower mean travel distances. It was found that the greater the mean travel distance, the greater the utilization of the electrolyzers and storage tanks lowering the associated per km capital cost of these components. At lower mean travel distances the utilization of the electrolyzers ranged from 25% to 30%, whereas at higher mean travel distances it ranged from 97% to 99%. At higher utilization factors the price of hydrogen is reduced, since the cost recovery is spread over a larger quantity of hydrogen.
3

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage

Peng, Dan 11 September 2013 (has links)
Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility of power grid operations. Underground storage of hydrogen with natural gas (UHNG) is proposed as a new energy storage technology, to be considered for utility-scale energy storage applications. UHNG is a composite technology: using electrolyzers to convert electrical energy to chemical energy in the form of hydrogen. The latter is then injected along with natural gas into existing gas distribution and storage facilities. The energy stored as hydrogen is recovered as needed; as hydrogen for industrial and transportation applications, as electricity to serve power demand, or as hydrogen-enriched natural gas to serve gas demand. The storage of electrical energy in gaseous form is also termed “Power to Gas”. Such large scale electrical energy storage is desirable to baseload generators operators, renewable energy-based generator operators, independent system operators, and natural gas distribution utilities. Due to the low density of hydrogen, the hydrogen-natural gas mixture thus formed has lower volumetric energy content than conventional natural gas. But, compared to the combustion of conventional natural gas, to provide the same amount of energy, the hydrogen-enriched mixture emits less carbon dioxide. This thesis investigates the dynamic behaviour, financial and environmental performance of UHNG through scenario-based simulation. A proposed energy hub embodying the UHNG principle, located in Southwestern Ontario, is modeled in the MATLAB/Simulink environment. Then, the performance of UHNG for four different scenarios are assessed: injection of hydrogen for long term energy storage, surplus baseload generation load shifting, wind power integration and supplying large hydrogen demand. For each scenario, the configuration of the energy hub, its scale of operation and operating strategy are selected to match the application involved. All four scenarios are compared to the base case scenario, which simulates the operations of a conventional underground gas storage facility. For all scenarios in which hydrogen production and storage is not prioritized, the concentration of hydrogen in the storage reservoir is shown to remain lower than 7% for the first three years of operation. The simulation results also suggest that, of the five scenarios, hydrogen injection followed by recovery of hydrogen-enriched natural gas is the most likely energy recovery pathway in the near future. For this particular scenario, it was also found that it is not profitable to sell the hydrogen-enriched natural gas at the same price as regular natural gas. For the range of scenarios evaluated, a list of benchmark parameters has been established for the UHNG technology. With a roundtrip efficiency of 39%, rated capacity ranging from 25,000 MWh to 582,000 MWh and rated power from 1 to 100 MW, UHNG is an energy storage technology suitable for large storage capacity, low to medium power rating storage applications.
4

Analysis of a Clean Energy Hub Interfaced with a Fleet of Plug-in Fuel Cell Vehicles

Syed, Faraz January 2011 (has links)
The ‘hydrogen economy’ represents an energy system in which hydrogen and electricity are the dominant energy carriers for use in transportation applications. The ‘hydrogen economy’ minimizes the use of fossil fuels in order to lower the environmental impact of energy use associated with urban air pollution and climate change. An integrated energy system is required to deal with diverse and distributed energy generation technologies such a wind and solar which require energy storage to level energy availability and demand. A distributed ‘energy hub’ is considered a viable concept in envisioning the structure of an integrated energy system. An energy hub is a system which consists of energy input/output, conversion and storage technologies for multiple energy carriers, and would provide an interface between energy producers, consumers, and the transportation infrastructure. Considered in a decentralized network, these hubs would form the nodes of an integrated energy system or network. In this work, a model of a clean energy hub comprising of wind turbines, electrolyzers, hydrogen storage, a commercial building, and a fleet of plug-in fuel cell vehicles (PFCVs) was developed in MATLAB, with electricity and hydrogen used as the energy carriers. This model represents a hypothetical commercial facility which is powered by a renewable energy source and utilizes a zero-emissions fleet of light duty vehicles. The models developed herein capture the energy and cost interactions between the various energy components, and also calculate the CO2 emissions avoided through the implementation of hydrogen economy principles. Wherever possible, similar models were used to inform the development of the clean energy hub model. The purpose of the modelling was to investigate the interactions between a single energy hub and novel components such as a plug-in fuel cell vehicle fleet (PFCV). The final model reports four key results: price of hub electricity, price of hub hydrogen, total annual costs and CO2 emissions avoided. Three scenarios were analysed: minimizing price of hub electricity, minimizing total annual costs, and maximizing the CO2 emissions avoided. Since the clean energy hub could feasibly represent both a facility located within an urban area as well as a remote facility, two separate analyses were also conducted: an on-grid analysis (if the energy hub is close to transmission lines), and an off-grid analysis (representing the remote scenarios). The connection of the energy hub to the broader electricity grid was the most significant factor affecting the results collected. Grid electricity was found to be generally cheaper than electricity produced by wind turbines, and scenarios for minimizing costs heavily favoured the use grid electricity. However, wind turbines were found to avoid CO2 emissions over the use of grid electricity, and scenarios for maximizing emissions avoided heavily favoured wind turbine electricity. In one case, removing the grid connection resulted in the price of electricity from the energy hub increasing from $82/MWh to $300/MWh. The mean travel distance of the fleet was another important factor affecting the cost modelling of the energy hub. The hub’s performance was simulated over a range of mean travel distances (20km to 100km), and the results varied greatly within the range. This is because the mean travel distance directly affects the quantities of electricity and hydrogen consumed by the fleet, a large consumer of energy within the hub. Other factors, such as the output of the wind turbines, or the consumption of the commercial building, are largely fixed. A key sensitivity was discovered within this range; the results were ‘better’ (lower costs and higher emissions avoided) when the mean travel distance exceeded the electric travel range of the fleet. This effect was more noticeable in the on-grid analysis. This sensitivity is due to the underutilization of the hydrogen systems within the hub at lower mean travel distances. It was found that the greater the mean travel distance, the greater the utilization of the electrolyzers and storage tanks lowering the associated per km capital cost of these components. At lower mean travel distances the utilization of the electrolyzers ranged from 25% to 30%, whereas at higher mean travel distances it ranged from 97% to 99%. At higher utilization factors the price of hydrogen is reduced, since the cost recovery is spread over a larger quantity of hydrogen.

Page generated in 0.0485 seconds