Spelling suggestions: "subject:"conergy infrastructure"" "subject:"coenergy infrastructure""
11 |
Vliv evropské legislativy na výstavbu energetické infrastruktury v ČR / Influence of European legislation on construction of energy infrastructure in the Czech RepubllicVoříšek, Martin January 2017 (has links)
No description available.
|
12 |
The Smart Home : Logistical media, infrastructure and practiced placesHägglund, Karin January 2017 (has links)
This master thesis in media and communication studies explores the concept of the smart home, which by various industries within communication, information and energy business alongside property developers is expected to be the model for future living, housing and infrastructure development. Departing from a theoretical framework highlighting media and infrastructure as temporal and spatial phenomena, the analysis shows how the smart home arranges and manages both means of time and space due to its saturation of information technologies in the form of sensors, applications and data visualizations. The result of the study suggests that the smart home could be understood as a logistical medium, although the temporal bias present in the expectations on future living suggests that the purpose of the smart home is to sustain a flow of logistics and capital both over space and over time; the latter in terms of sustainability.
|
13 |
Risks, Attitudes, and Discourses in Hydrocarbon Transportation Communities: Oil by Rail and the United States’ Shale Energy RevolutionJunod, Martha-Anne N. January 2020 (has links)
No description available.
|
14 |
[en] A HYBRID SOLUTION USING STOCHASTIC AND NEURAL NETWORKS MODELING FOR THE CONSIDERATION OF SAFETY UNCERTAINTIES IN CONSTRUCTION PLANNING METHODS / [pt] UMA SOLUÇÃO HÍBRIDA UTILIZANDO MODELAGEM ESTOCÁSTICA E DE REDES NEURAIS PARA A CONSIDERAÇÃO DE INCERTEZAS DE SEGURANÇA EM MÉTODOS DE PLANEJAMENTO DE CONSTRUÇÃOCRISTIANO SAAD TRAVASSOS DO CARMO 24 January 2024 (has links)
[pt] Na indústria da construção, conhecida por sua natureza dinâmica e caótica, muitas vezes há acidentes de trabalho. Os métodos de planejamento existentes que abordam incertezas, no entanto, frequentemente ignoram as variáveis de segurança, e a literatura relevante é escassa. Este estudo introduz um novo método de planejamento de obras focado na influência de ocorrências de segurança na duração do projeto, especificamente em projetos de construção de usinas de energia. A principal hipótese é que eventos de segurança durante a construção afetam significativamente a duração do projeto, levando a cronogramas deficientes quando não considerados no processo de planejamento. Utilizando a teoria de processos estocásticos, particularmente o processo de quase-nascimento e morte, o estudo explora como os estados de segurança influenciam os estados de atraso. Modelos de redes neurais complementam o modelo estocástico para previsão de séries temporais bivariadas derivadas dos estados estocásticos. Dados reais de projetos demonstram que os eventos de segurança, supondo eventos de atraso planejados, são mais do que o dobro do valor dos estados de atraso. A aplicação do modelo estocástico a um projeto real com um atraso planejado de 8 dias indica um estado de segurança mais provável de 19. Os modelos de memória de curto prazo de longo prazo superam os métodos estatísticos na previsão de séries temporais bivariadas, com uma métrica de estimação quadrática média raiz significativamente menor. A abordagem de planejamento de construção híbrida proposta mostra-se adequada para as fases de pré-construção e construção, oferecendo melhores indicadores de tomada de decisão e apoiando a gestão de segurança reativa. / [en] The construction industry, known for its dynamic and chaotic nature, often experiences work accidents. Existing planning methods addressing uncertainties, however, frequently overlook safety variables, and the relevant literature is scarce. This study introduces a novel construction planning method focused on investigating the impact of safety incidents on project duration, specifically in energy infrastructure construction projects. The main hypothesis is that safety events during construction significantly affect project duration, leading to deficient schedules when not considered in the planning process. Utilizing stochastic process theory, particularly the quasi birth and death process, the study explores how safety states influence delay states. Neural network models complement the stochastic model for forecasting bivariate time series derived from safety and delay stochastic states. Real-life project data demonstrates that safety events, assuming planned delay events, are over double the delay states value. Applying the stochastic model to a real project with a planned 8-day delay indicates a most probable safety state of 19. Long short-term memory models outperform statistical methods in bivariate time series forecasting, with a significantly smaller root mean square estimation metric. The proposed hybrid construction planning approach proves suitable for both pre-construction and construction phases, offering improved decision-making indicators and supporting reactive safety management.
|
Page generated in 0.0821 seconds