• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulations of a novel accelerator of intense ion beams for high energy density physics studies. / 作高能量密度物理研究的一種新型強離子束加速器的模擬 / Simulations of a novel accelerator of intense ion beams for high energy density physics studies. / Zuo gao neng liang mi du wu li yan jiu de yi zhong xin xing qiang li zi shu jia su qi de mo ni

January 2009 (has links)
Ling, Chi Yeung = 作高能量密度物理研究的一種新型強離子束加速器的模擬 / 凌子陽. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (p. 111-114). / Abstracts in English and Chinese. / Ling, Chi Yeung = Zuo gao neng liang mi du wu li yan jiu de yi zhong xin xing qiang li zi shu jia su qi de mo ni / Ling Ziyang. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Background --- p.7 / Chapter 2.1 --- High Energy Density Physics and Warm Dense Matter --- p.7 / Chapter 2.1.1 --- Definition of HEDP and WDM --- p.7 / Chapter 2.1.2 --- The physics of WDM --- p.9 / Chapter 2.1.3 --- Advantages of the ion beam approach --- p.10 / Chapter 2.2 --- Intense low energy ion beam machines requirements for NDCX-II --- p.12 / Chapter 2.3 --- Neutralized Drift Compression Experiment (NDCX) --- p.14 / Chapter 2.3.1 --- Neutralized Transport Experiment (NTX) --- p.15 / Chapter 2.3.2 --- The first NDCX --- p.18 / Chapter 2.4 --- Accelerator architectures proposed for NDCX-II --- p.20 / Chapter 2.4.1 --- Radio Frequency Linear Accelerator (RF Linac) --- p.20 / Chapter 2.4.2 --- Electrostatic accelerator --- p.23 / Chapter 2.4.3 --- Drift Tube Linac (DTL) --- p.23 / Chapter 2.4.4 --- Linear Induction Accelerator (induction linac) --- p.24 / Chapter 2.5 --- Pulse Line Ion Accelerator --- p.25 / Chapter 2.6 --- Review on tests of Pulse Line Ion Accelerator --- p.30 / Chapter 2.7 --- Simulation codes --- p.32 / Chapter 2.7.1 --- 3-D Electromagnetic code MAFIA --- p.33 / Chapter 2.7.2 --- Particle-in-cell code WARP --- p.35 / Chapter 2.8 --- Envelope equation of ion beam and beam diagnostics --- p.37 / Chapter 3 --- Investigations on insulator breakdown in the PLIA --- p.40 / Chapter 3.1 --- Modeling in MAFIA --- p.40 / Chapter 3.2 --- Scaling Law --- p.42 / Chapter 3.3 --- Investigation of different frequency modes near insulator surface --- p.46 / Chapter 3.4 --- Standing wave effect in PLIA --- p.50 / Chapter 3.5 --- Conclusion --- p.52 / Chapter 4 --- PLIA based design for the second Neutralized Drift Compression Experiment --- p.55 / Chapter 4.1 --- The injector --- p.56 / Chapter 4.2 --- Pulse Line Ion Accelerator sections --- p.60 / Chapter 4.2.1 --- Basic design strategy --- p.60 / Chapter 4.2.2 --- Simulation results of PLIA sections --- p.69 / Chapter 4.3 --- Neutralized Drift Compression Section --- p.77 / Chapter 4.3.1 --- Drift length --- p.78 / Chapter 4.3.2 --- First focusing solenoid --- p.80 / Chapter 4.3.3 --- Plasma-filled region --- p.84 / Chapter 4.3.4 --- Final focusing solenoid and the best focal point --- p.88 / Chapter 4.3.5 --- Sensitivity to drift length and focusing strength --- p.91 / Chapter 4.4 --- Conclusion --- p.92 / Chapter 5 --- Other Pulse Power Options --- p.94 / Chapter 5.1 --- The injector and the beamline --- p.95 / Chapter 5.2 --- 3-meter electrostatic column --- p.97 / Chapter 5.3 --- Induction linac --- p.100 / Chapter 5.4 --- Hybrid of induction linac and Pulse Line Ion Accelerator --- p.104 / Chapter 5.5 --- Conclusion --- p.107 / Chapter 6 --- Discussions --- p.108 / Chapter 6.0.1 --- Future development of PLIA --- p.110 / Bibliography --- p.111
2

Modeling and simulations of diphasic composites for development of high energy density dielectrics

Patil, Sandeep Kesharsingh, January 2008 (has links) (PDF)
Thesis (Ph. D.)--Missouri University of Science and Technology, 2008. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 21, 2008) Includes bibliographical references.
3

Study of warm dense matter and high energy density physics. / 溫暖稠密物質及高能量密度物理的研究 / Study of warm dense matter and high energy density physics. / Wen nuan chou mi wu zhi ji gao neng liang mi du wu li de yan jiu

January 2009 (has links)
Ng, Siu Fai = 溫暖稠密物質及高能量密度物理的研究 / 吳肇輝. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 126-133). / Abstracts also in Chinese. / Ng, Siu Fai = Wen nuan chou mi wu zhi ji gao neng liang mi du wu li de yan jiu / Wu Zhaohui. / Chapter 1 --- Introduction --- p.16 / Chapter 1.1 --- General review of high energy density physics --- p.16 / Chapter 1.2 --- General review of warm dense matter --- p.20 / Chapter 1.2.1 --- Physics of warm dense matter --- p.20 / Chapter 1.2.2 --- Uncertainties of warm dense matter --- p.23 / Chapter 1.2.3 --- Challenges of warm dense matter studies --- p.25 / Chapter 1.3 --- Use of intense heavy ion beam --- p.27 / Chapter 1.4 --- Motivation and structure of this thesis --- p.32 / Chapter 2 --- Hydrodynamic simulations --- p.34 / Chapter 2.1 --- Lagrangian hydrodynamic code --- p.34 / Chapter 2.2 --- Hydrodynamic equations --- p.35 / Chapter 2.3 --- Artificial viscosity --- p.36 / Chapter 3 --- Equations of state --- p.38 / Chapter 3.1 --- Van der Waals' equation of state --- p.39 / Chapter 3.2 --- Quotidian equation of state --- p.41 / Chapter 3.3 --- Saha-based equation of state --- p.41 / Chapter 3.4 --- Inverse power potentials equation of state --- p.48 / Chapter 3.5 --- Gruneisen-type equation of state --- p.53 / Chapter 3.6 --- Discussion --- p.59 / Chapter 4 --- Single bubble sonoluminescence --- p.63 / Chapter 4.1 --- Introduction --- p.63 / Chapter 4.2 --- Theory of sonoluminescence --- p.65 / Chapter 4.2.1 --- Bubble wall dynamics --- p.66 / Chapter 4.2.2 --- Radiation transport --- p.67 / Chapter 4.2.3 --- Diffusive stability --- p.68 / Chapter 4.3 --- Numerical simulation --- p.68 / Chapter 4.3.1 --- Determination of the ambient radius --- p.69 / Chapter 4.3.2 --- Simulations using SEOS --- p.70 / Chapter 4.3.3 --- Simulations using QEOS --- p.77 / Chapter 4.4 --- Conclusion --- p.82 / Chapter 5 --- Collapsing bubble in ion-beam-heated metal --- p.83 / Chapter 5.1 --- Introduction --- p.83 / Chapter 5.2 --- Bubble collapse --- p.86 / Chapter 5.2.1 --- First step of collapse --- p.88 / Chapter 5.2.2 --- Stagnation point and bubble size --- p.89 / Chapter 5.2.3 --- Outer boundary and metal thickness --- p.91 / Chapter 5.2.4 --- Metal layer just outside bubble --- p.93 / Chapter 5.3 --- Effect of equation of state used --- p.95 / Chapter 5.3.1 --- Inverse power potentials equation of state --- p.95 / Chapter 5.3.2 --- Effect of ionization --- p.97 / Chapter 5.3.3 --- Effect of hard core --- p.97 / Chapter 5.3.4 --- Effect of EOS for metal --- p.97 / Chapter 5.4 --- Effect of proposed experimental parameters --- p.102 / Chapter 5.4.1 --- Initial gas density --- p.102 / Chapter 5.4.2 --- Energy deposition rate --- p.102 / Chapter 5.5 --- Conclusion and discussion --- p.105 / Chapter 6 --- High coupling efficiency compression by intense ion beams --- p.108 / Chapter 6.1 --- Introduction --- p.108 / Chapter 6.2 --- Ion stopping formulation --- p.111 / Chapter 6.3 --- Numerical simulation --- p.112 / Chapter 6.3.1 --- Lithium hydride target --- p.112 / Chapter 6.3.2 --- Underdense aluminum foam --- p.118 / Chapter 6.4 --- Conclusion --- p.119 / Chapter 7 --- Conclusion --- p.121 / Chapter 7.1 --- Summary --- p.121 / Chapter 7.2 --- Suggestions for future work --- p.123 / Bibliography --- p.126
4

Impact of the 138,139La radiative strength functions and nuclear level densities on the galactic production of 138La

Kheswa, Bonginkosi Vincent 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: 138La is a very long-lived and low abundant p-isotope. Most p-nuclei with Z > 54 are thought to be produced through photodisintegration of s- and r-process seed nuclei. However, this p-process cannot satisfactorily explain the observed abundance of 138La, and more exotic processes, such as ve + 138Ba → 138La + e− have to be considered. This v-process can reproduce the observed solar abundance of 138La, but the significance of the p-process cannot be ruled out due to very high uncertainties in its predicted reaction rates. These errors have been discussed to be mainly due to the unavailability of the experimental nuclear level densities and radiative strength functions of 138,139La, which are critical ingredients for astrophysical reaction rate calculations based on the Hauser-Feshbach approach. Thus, nuclear physics measurements are necessary to place the nuclear properties on a strong footing, in order to make statements regarding the importance of p- and v-processes. In this research project the experimental nuclear level densities and radiative strength functions of 138,139La were measured below the neutron thresholds. From this new experimental data, the Maxwellian averaged cross sections for the 137La(n, y) and 138La(n, y) reactions, at the p-process temperature of 2.5⇥109 K, were computed with the TALYS code. Using these reaction rates the nucleosynthesis calculations in the O/Ne-rich layers of Type II supernovae were performed. The results imply that the standard p-process still under-produces 138La, which puts the v-process on a very strong footing as the main production process for 138La. / AFRIKAANSE OPSOMMING: 138La is ’n p-isotoop met ’n baie lang halfleeftyd. Daar word tans vermoed dat p-nukiede met Z > 54 geproduseer word deur fotodisintegrasie van sen r-proses saadnukliede. Nogtans verklaar hierdie p-proses die waargenome natuurlike voorkoms van 138La nie behoorlik nie, en meer eksotiese prosesse soos byvoorbeeld ve+ 138Ba → 138La + e− moet in aanmerking geneem word. Hierdie v-proses kan die waargenome natuurlike voorkoms van 138La verklaar, maar die belangrikheid van die p-proses kan nie afgewys word nie weens die onsekerheid in die voorspelde reaksie snelheid. Sodanige onsekerhede word bespreek en word hoofsaaklik toegeskryf aan die gebrek aan eksperimentele vlakdigthede en stralings sterkefunksies van die kerne 138,139La, wat van kritiese belang is vir berekeninge van astrofisiese reaksie snelhede gebaseer op die Hauser-Feshbach benadering. Kernfisiese metings is derhalwe noodsaaklik om die eienskappe van kerne op ’n stewige grondslag te plaas sodat uitlatings gemaak kan word omtrent die belangrikheid van p- en v-prosesse. In hierdie esperimentele navorsingsprojek is die kern vlakdigthede en stralings sterkefunksies van 138,139La onder die neutron reaksiedrumpels gemeet. Die nuwe gemete data maak dit moontlik om die Maxwell-gemiddelde kansvlakke vir die 137La(n, y) en 138La(n, y) reaksies by ’n p-proses temperatuur van 2.5 x 109 K met die TALYS program te bereken. Hierdie reaksie snelhede is daarna gebruik om berekeninge van elementvorming in die O/Ne-ryke lae van Tipe-II supernovas te maak. Die resultate wys uit dat die stadaard p-proses nie genoegsame 138La produseer nie, wat derhalwe die v-proses op ’n baie stewige grondslag plaas as die hoof produksie proses vir 138La.

Page generated in 0.1012 seconds